La EvAU de Singapur

Me he forzado a sacar un rato para escribir una entrada, aunque sea breve, porque hace unos días estuve en Valladolid, invitado por la sociedad de profesores Miguel de Guzmán y por el centro de formación de profesorado, para presentar las ideas básicas de las matemáticas de Singapur, y quedé más o menos comprometido en enseñarles cómo es una prueba de nivel pre-universitario allí.

Una de las cosas más importantes que trato de transmitir es que van más despacio en el desarrollo curricular. Una pregunta que siempre surge es: vale, pero entonces, ¿hasta dónde llegan? Mi contestación siempre es que el ir más despacio y haciendo las cosas con calma les permite, a la larga, llegar más lejos (y, sobre todo, con mayor profundidad). Creo que una buena forma de hacerse a la idea es ver la prueba final que tienen, su análogo a nuestra EvAU (EBAU, o como se llame en cada lugar), la prueba de matemáticas previa al acceso a la universidad.

No es del todo inmediato, porque tienen tres niveles de matemáticas preuniversitarias, H1, H2 y H3, en orden creciente de dificultad. No he encontrado datos sobre cuántos alumnos se decantan por cada una de ellas, pero por los programas parece que las H3 son unas matemáticas realmente avanzadas, pensadas para los alumnos excelentes, y que llegan, por ejemplo, a ecuaciones diferenciales. Las H1 parecen ser las matemáticas básicas preuniversitarias, lo que seguramente podríamos equiparar a nuestras matemáticas aplicadas para ciencias sociales. Las H2 quedarían, por tanto, como las análogas a nuestro examen de Matemáticas II. Al final pongo el enlace a una edición de la prueba. Creo que hay varias cosas que nos pueden resultar llamativas:

  • La extensión. El examen tiene dos partes, de tres horas cada una. Es verdad que cualquier prueba puede tener efectos secundarios negativos, el conocido “teaching to the text”. Si un examen está bien pensado, y es exhaustivo, este problema puede tener consecuencias limitadas.
  • las tablas de fórmulas que aparecen al principio son parte del material que los alumnos pueden usar durante el examen. No hace falta memorizar fórmulas: ni identidades trigonométricas, ni tablas de primitivas. Una calculadora gráfica también es parte del equipamiento estándar.
  • pero lo más importante es la profundidad de la prueba, claramente fuera del alcance de nuestros estudiantes al terminar el bachillerato.

Aquí está la prueba (la versión original, en inglés).

Espero que la siguiente entrada no se demore otros 7 meses … Y espero poder escribir pronto sobre alguno de los proyectos en los que estoy involucrado, y que me tienen colapsado.

Anuncios