El test de la mediatriz

Cuando cae en mis manos un texto en el que debo esperar encontrarla, lo primero que hago para hacerme una primera idea del enfoque que sigue el libro en la presentación de las matemáticas es buscar la definición de mediatriz de un segmento. Las posibles definiciones son:

  1. la mediatriz de un segmento es la recta perpendicular que pasa por el punto medio del segmento.
  2. la mediatriz de un segmento es el conjunto de puntos que equidistan de los extremos del segmento.

Mis opiniones en esta entrada pueden ser más subjetivas que nunca, no conozco estudios sobre el tema, pero creo que el optar por una u otra dice bastante del planteamiento metodológico del texto. Claramente, la primera alternativa es más sencilla de entender, más visual. Hasta el lector más despistado será capaz de visualizarla. Sólo tiene un inconveniente: que no sirve para nada.

La segunda alternativa requiere por supuesto más trabajo: a partir de la definición, hay que descubrir que ese conjunto de puntos es una recta, que es perpendicular al segmento, y que pasa por el punto medio de éste.

El lector puede estar pensando en este punto que los alumnos deben tener las dos visiones de la mediatriz. Y esto es  cierto, por supuesto. Que, por tanto, partir de una de ellas como definición, y llegar a la otra como una propiedad, resultará equivalente. Discrepo: la definición (el concepto) y las propiedades que de ella se deducen, se sitúan en niveles cognitivos distintos. El concepto, que se debe reflejar en la definición, es lo que permitirá insertar el nuevo objeto en la estructura de aprendizaje del alumno.

Cuando la mediatriz aparece en diferentes construcciones geométricas la clave es la idea de equidistancia.  Por tanto, un alumno que ha interiorizado la definición (2) tendrá mucho más fácil entender el papel de la mediatriz en las construcciones.

Otra ventaja de la definición (2) es que posibilita el aprendizaje por descubrimiento. La idea de equidistancia en natural, y se puede pedir a los alumnos que encuentren puntos que estén a la misma distancia de dos puntos A y B determinados.

Y existe por supuesto una última razón para preferir la definición (2). Es la que se corresponde con la de las matemáticas superiores. La perpendicular en el punto medio aparece cuando medimos la distancia de la forma usual, pero en un curso de bachillerato, o en un seminario para alumnos interesados, es perfectamente posible plantear el problema de estudiar qué tipo de mediatrices aparecen si la distancia entre dos puntos se mide de otra forma.

Sin haber hecho un estudio exhaustivo, concluyo esta entrada con mi impresión de que, en los textos de primaria y secundaria españoles, la opción (1) es claramente mayoritaria.

Para terminar, un par de problemas que se pueden plantear ya en secundaria para trabajar la mediatriz desde el punto de vista métrico:

  • En el parque de la figura hay papeleras en los puntos A, B, C y D. Dibuja el conjunto de puntos del parque para los que la papelera más cercana es la situada en el punto A.

parque

  • Construye la circunferencia más grande que pasa por A y por B y que tiene el centro dentro del polígono P.

circ-poli

El álgebra y la energía fotovoltaica

De acuerdo, admito que esta vez me he dejado llevar por la tentación del título llamativo. Prometo no abusar del recurso. Pero es que creo que realmente hay una conexión entre como en España estamos tratando estos dos temas. En la figura se puede ver la evolución de la cifra total de MWh de energía solar fotovoltaica en funcionamiento en Alemania y en España, entre los años 2002 y 2011 (los incrementos corresponden, por tanto, a la cantidad instalada cada año). La escala vertical es distinta, pero lo que me interesa es observar lo distinta que ha sido la evolución en los dos países (y supongo que no es difícil averiguar cuál corresponde a España y cuál a Alemania).

fv-instalada-Alemania-EspañaPues bien, creo que este mismo comportamiento, caracterizado por el gusto por los extremos, aparece en muchos aspectos en nuestro país, y en particular en el tratamiento del álgebra a lo largo de la educación preuniversitaria. En muchos países, durante la educación primaria hay algún tipo de introducción al razonamiento algebraico, que generalmente es conocido como preálgebra. Pueden ser cosas muy sencillas, como por ejemplo: dada la serie 3, 5, 7, …. ¿cuál es el siguiente término? ¿Y el término que ocupa el 10º? ¿Y el término que ocupa el lugar n? Estas preguntas ayudan a que los chicos empiecen a pensar despegándose un poco de un número concreto.

En España no se trabajan situaciones de este tipo en la enseñanza primaria, y el álgebra llega, de golpe, normalmente en 1º de secundaria. Y llega «a lo grande», con toda su terminología. Aparecen los monomios, con su parte literal, los monomios semejantes y cuándo se pueden sumar y cuándo no. Por supuesto, es imposible que un estudiante entienda nada. Lo máximo a lo que podemos aspirar es a que manejen correctamente las técnicas, y que empiecen a entender con el uso. Pero esto es un paso en la dirección equivocada, porque introduce el álgebra como un nuevo mundo, con nuevas y extrañas reglas, cuando se debería presentar como la extensión natural de la aritmética. De esta manera, muchos de los alumnos nunca llegan a dominar ni las técnicas, ni mucho menos el razonamiento algebraico.

Si hiciéramos un estudio de la «cantidad de álgebra» (por ejemplo, el número de letras en expresiones matemáticas) que aparece en nuestros libros, a lo largo de los diferentes cursos, creo que la gráfica se parecería bastante a la de la derecha, en tanto que en los casos de otros países, el aspecto sería más parecido a la gráfica de la izquierda. Un ejemplo: en este enlace he puesto un par de fotocopias del tema de potencias. El ejemplo español corresponde a un libro de 2º de la ESO; el otro corresponde a un libro de 3º de educación secundaria de Singapur. En los dos países la educación primaria son 6 cursos, y arranca a los 6 años, de manera que el libro de Singapur corresponde a un año posterior. Quizá esté un poco obsesionado con el tema, y me encantaría leer vuestras opiniones, pero me parece que los ejercicios de Singapur están mejor pensados para ayudar a que el alumno entienda los conceptos básicos.

El álgebra es un tema importante, y volveré sobre él, pero quiero terminar hoy con un par de observaciones sencillas, que creo que facilitarían el paso de la aritmética al álgebra.

  • en el tercer ciclo de primaria, lo más usual es recurrir siempre a los decimales, y al cálculo aproximado, hasta el punto de que si le presentamos a un alumno la expresión   14 \pi   como solución de un problema que pide la longitud de una circunferencia, seguramente nos encontremos con la respuesta «pero el problema no está terminado» o «pero eso no es un número». Por supuesto, se debe trabajar a veces con la aproximación decimal de  \pi (o de cualquier otro número), pero también se debería cuidar el trabajo con aritmética exacta. Si un alumno está familiarizado con calculos como  2 \pi - \frac{\pi} {2} = \frac{3\pi}{2} tendrá después mucho más fácil el comienzo de los cálculos algebraicos.
  • es fundamental que los alumnos, durante la primaria, entiendan bien el significado del símbolo » = »   (a mi amiga Belén Palop le debo la primera referencia sobre la importancia de este hecho – no pretendo que hayamos descubierto nada: una vez localizado el problema, ya he visto que esta dificultad de aprendizaje aparece en bastantes trabajos de didáctica de las matemáticas). Antes de llegar al álgebra (en concreto, a las ecuaciones), se suele obviar el carácter simétrico del signo » = «. El significado es casi siempre «el término de la izquierda produce el de la derecha». Un síntoma evidente de esto es cuando vemos que un alumno escribe  3 + 5 = 8 + 7 = 15 . Está claro que un alumno que usa el símbolo » = » de esta forma tendrá serios problemas con las ecuaciones algebraicas. Hay varias estrategias para resolver esta dificultad de aprendizaje, pero la más sencilla (la descubrí en los libros de primer ciclo de Singapur) es alternar, desde el principio, los típicos ejercicios como 3 + \square = 8 con otros como 7 = \square + 5 .