Par/Impar

El concepto de paridad es seguramente el ideal para que un alumno empiece a explorar el mundo del razonamiento matemático. ¿Cuándo? Desde mi punto de vista, cuanto antes, mejor. Evidentemente, el enfoque no puede ser el mismo si se trabaja en 2º de primaria o en 2º de la ESO, pero un niño de 6-7 años está perfectamente preparado para empezar a explorar el concepto de número par, y las propiedades de la aritmética de los números pares e impares.

Sólo hay un problema, y es cómo se introducen los números pares en los libros de texto. En la figura se muestra un ejemplo de un libro de texto. Una vez más, la editorial no es importante: las mayoritarias hacen todas lo mismo. Creoo que se trata del mismo tipo de error del que hablé en la entrada sobre la mediatriz de un segmento. Se confunde lo que es la definición de algo con lo que es una propiedad derivada de esa definición. Si por alguna extraña mutación tuviéramos nueve dedos, todo sería distinto …

pares-imparesSe trata de un error epistemológico grave, pero lo más importante para el tema que nos ocupa es que definir los números pares como se hace en la figura empobrece cualquier tipo de trabajo sobre ellos. Hay dos posibles definiciones para los números pares, y las voy a formular al nivel que lo haría ante una clase de niños de 6-7 años:

  • el número de objetos es par si se puede dividir en dos montones iguales, sin partir ningún objeto.
  • el número de objetos es par si se pueden emparejar.

No creo que una de las dos sea mejor que la otra. De hecho, parte del trabajo de razonamiento matemático que hay que hacer es que los niños se convenzan de que son definiciones equivalentes. A partir de ellas, además, se pueden trabajar multitud de cuestiones: propiedades de los números pares (en qué cifra terminan), qué pasa si sumamos dos números pares, o dos que no lo sean, o …

Definiendo los números pares como hacen los libros de texto (y como por tanto se hace en la mayoría de las aulas) estamos ignorando el principio básico que ya tenía claro Plutarco hace más de 2000 años: estamos tratando al cerebro como un vaso que hay que llenar, cuando en realidad es una lámpara que hay que encender.

Supongo que los libros de texto toman el camino «fácil», el problema es que no lleva a ninguna parte. Seguro que hay lectores que ya han comprobado que las defininiciones que he propuesto son perfectamente posibles ya en primer curso de primaria. Nosotros lo comprobamos el otro día en una clase «normal». Por supuesto, la observación final es que esa definición no fue el fin del proceso, sino el comienzo de las más variadas preguntas por parte de los niños…

Anuncio publicitario

La división (y III)

Para terminar, por lo menos de momento, con el tema de la división, una entrada breve sobre un tema que puede parecer un detalle, pero que creo que tiene su importancia. ¿Qué notación se debería usar para la división con resto? ¿Cómo escribimos que, al dividir 27 entre 6, el cociente es 4 y el resto 3? Por supuesto, siempre se puede utilizar el lenguaje usual, y seguro que esto es lo más conveniente al principio, pero conforme avanza el estudio, una notación adecuada tendría muchas ventajas. De entrada, si le pedimos a un alumno de primaria o secundaria que nos escriba el resultado de dividir 27 entre 6, como división en los enteros, la alternativa mayoritaria sería sin duda la disposición del algoritmo tradicional (aunque no les hiciera falta para llegar al resultado, porque el cálculo es así de sencillo). Si queremos reforzar el cálculo mental y posponer, o prescindir de, el algoritmo traidicional, necesitamos una buena notación.

En el mundo anglosajón, la notación usual es escribir 27 \div 6 = 4\,R\,3. Creo que tiene un grave inconveniente: el signo igual que aparece no es en realidad un igual. También escribimos 35 \div 8 = 4\,R\,3, de manera que estamos abriendo la puerta a un conflicto cognitivo: «si dos cosas son iguales a una tercera, también son iguales entre sí». No conozco ninguna otra alternativa que se use, y no se me ocurre ninguna que pueda ser mejor que recurrir a la mal llamada «prueba de la división» (en realidad, es la definición de división), es decir, escribir 27 =4 \times 6 +3.

¿Cuáles son los inconvenientes de esta notación? Sólo veo dos posibles:

  • puede costar un poco al principio, aunque es posible que esta percepción sea simplemente debida a que no estamos acostumbrados a ella, y no sea en absoluto así para niños que empiezan con el tema. En todo caso, si una opción es adecuada, dedicarle el tiempo necesario para asimilarla bien desde el principio es siempre rentable en el aprendizaje a medio y largo plazo.
  • la segunda es un poco más seria, y es el papel aparentemente simétrico de divisor y cociente. Para resolver esto, tendríamos que establecer el convenio de que uno de los dos, digamos el cociente, va siempre el primero, y trabajar ejemplos como 29 =4 \times 6 +529 =7 \times 4 +1.

Todo lo demás me parecen ventajas: la más importante, desde luego, esta notación facilita la comprensión de la operación y la interpretación de los resultados. Es una relación numérica «como todas» y por tanto evidencia qué ocurre con el cociente y el resto cuando dividendo y divisor se multiplican o dividen por un mismo número. Y es la natural para hacer cálculo mental: estoy convencido de que alumnos acostumbrados a ella no se encontrarían en el arranque de la trigonometría con el problema que me comentaba mi hija, y que seguro que es familiar para muchos profesores de secundaria. Al tratar de reducir un ángulo de 740º, ¿cómo se dividía por 360?

 

Las demostraciones

La mayoría de los alumnos que entran en la universidad no saben distinguir cuándo se encuentran ante una demostración, cuándo ante un contraejemplo, cuándo ante la comprobación de un hecho en algún caso particular, y podríamos seguir. La causa es clara: la mayoría no se han tropezado nunca ni siquiera con un esbozo de argumento-demostración. Y la pena es que al no trabajar este tema les estamos privando de una de las competencias más importantes que les podrían aportar las matemáticas: la capacidad de razonar, argumentar, criticar, estudiar si un argumento es completo o no …

No se trata, por supuesto, de insistir en formalizar las ideas de manera prematura, ni obsesionarse con el rigor absoluto. Creo que la clave para poder trabajar este tema cuanto antes es lograr un equilibrio entre los argumentos y los hechos intuitivamente claros. Y, por supuesto, elegir muy bien las demostraciones que se van a trabajar.

¿Cuáles deberían ser las características de una demostración adecuada para primaria/secundaria? Desde mi punto de vista, las siguientes:

  1. que demuestre un hecho que no sea intuitivamente claro; de lo contrario, podemos crear el efecto del que ya hablé en esta entrada, a propósito del Teorema de Bolzano.
  2. que sea enriquecedora, en el sentido de que maneje conceptos que se están estudiando, y que por tanto ayude a entenderlos con mayor profundidad.
  3. que el alumno pueda, al menos, intentar descubrirla por sus propios medios, o con algunas indicaciones.
  4. que deje la puerta abierta a explorar variantes: generalizaciones, casos particulares, …

Por supuesto, hay algunas demostraciones que no cumplen todos estos requisitos, pero cuyo estudio me parece imprescindible, como el hecho de que la suma de los ángulos de un triángulo son 180º. Otras, como la demostración visual de la suma de los primeros n números impares, son totalmente recomendables. Su belleza y sencillez puede ayudar a que alguno de nuestros alumnos descubra el mundo de las matemáticas.  Pero si pensamos en un resultado cuya demostración cumpla los cuatro requisitos mencionados anteriormente, mi favorito ahora mismo es el siguiente:

Si tomamos 3 múltiplos de 4 consecutivos, uno de ellos (y solo uno) es múltiplo de 3.

El resultado se puede introducir ya al final de primaria, cuando se estudia la divisibilidad por primera vez. Aunque sólo sea a través de ejemplos, me parece una buena herramienta para trabajar múltiplos y divisores. Es posible que muchos de los alumnos tengan ya totalmente anestesiada la curiosidad, pero si en alguno de ellos sobrevive algo de interés, creo que propiedades como esta pueden despertar el deseo de aprender más sobre los números.

Además, la demostración es elemental y formativa. Se trata simplemente de darse cuenta de que, a partir del resto de dividir N entre 3, podemos calcular los restos de los siguientes múltiplos, N+4 y N+8. Creo que con alguna ayuda no es imposible que algunos alumnos descubran, o completen, el argumento por sí mismos.

Por último, el 3 y el 4 del enunciado no tienen mucho de especial (si algo, naturalmente). 4 se puede cambiar por 5 o por 7, y el resultado sigue siendo cierto. Por tanto, bien al nivel completamente elemental de estudiar ejemplos, o bien al nivel de determinar cuándo se puede generalizar el argumento-demostración, nos queda abierta la puerta a estudiar para qué parejas de números un resultado análogo sigue siendo cierto.

Lenguaje y matemáticas

La relación entre lenguaje y matemáticas es un tema que me parece muy importante, y del que quiero aprender más. Las siguientes frases, leídas en la portada de El País de hoy domingo (edición de Madrid), me han vuelto a recordar el tema:

Mucho más intensa es la destrucción de empleo, que no cesa: se han perdido cuatro millones de puestos de trabajo, un 20% menos.

No está queriendo decir que se haya perdido menos empleo que en otros periodos, sino que se ha perdido el 20% del empleo existente al empezar la crisis. Muy mal tienen que estár las cosas si la aparición de un sencillo porcentaje provoca semejante atropello a la sintaxis más elemental de la lengua castellana.

Los algoritmos tradicionales – La división (II)

La última entrada la dediqué por completo al debate algoritmo extendido – algoritmo comprimido. Quedó pendiente otro comentario de David, que me parece incluso más relevante:

Si queremos defender los algoritmos tradicionales (nosotros los defendemos, lo que atacamos es su introducción prematura) su presentación se tendria que “construir” en un “ambiente de resolución de problemas” empezar por algoritmos extensos y a partir de simplificaciones llegar al estándar.

Elegir adecuadamente el momento en que se introduce un algoritmo es fundamental, y estoy completamente de acuerdo en que casi siempre se hace de forma prematura. La práctica usual en nuestros colegios es comenzar con el algoritmo de la suma, y cuando se ha trabajado hacer, como aplicación, problemas con sumas. Y lo mismo se repite con el resto de algoritmos de la aritmética básica. Si tuviera que elegir, creo que este me parece el error más grave en nuestra enseñanza de las matemáticas básicas, y no por casualidad le dediqué al tema la primera entrada de este blog. Voy a permitirme repetir aquí la idea principal: estoy convencido de que el origen de la frase más escuchada cuando se empiezan a trabajar problemas, el «no entiendo el problema», tiene su origen en que no entienden el algoritmo correspondiente: el algoritmo de la suma en columnas, tal y como se suele presentar (y para esto da igual si las llevadas se justifican adecuadamente o no), tiene poco que ver con la idea intuitiva de contar la unión de dos colecciones de objetos. Me parece esencial que los niños trabajen primero los problemas, y presentar después los algoritmos.

Sería importante que nos acostumbráramos a una precisión terminológica, y a que diferenciáramos las expresiones «saber dividir» y «conocer el algoritmo de la división»: un niño de 5 años, que tiene 6 caramelos y quiere repartirlos por igual entre 3 de sus amigos, encontrará con seguridad una estrategia para hacerlo. Por tanto, al menos en cierto sentido, sabe dividir. Otra cosa es que necesite ir desarrollando estrategias que le permitan manejar números mayores. Es esencial que los niños trabajen, ya desde el primer curso de primaria (y mucho mejor si es antes de haber empezado con ningún algoritmo) problemas variados. Por ejemplo, se podrían plantear en clase problemas como estos:

  • Miguel ha llevado al cole 3 caramelos, Luisa 4 y Ramón 5. En el recreo se comen 2 caramelos cada uno, y el resto se lo dan a María. ¿Cuántos caramelos se come María?
  • Ricardo tiene 10 euros. Le da la mitad a su amigo José, 3 euros a su amiga Luisa, y el resto a su amigo Juan. ¿Cuánto dinero le da a Juan?
  • He comprado 3 bolsas de chuches, y en cada bolsa hay 4 regalices. ¿Cuántos regalices tengo en total?
  • Quiero repartir mis 12 euros entre mis 3 amigos. ¿Cuánto dinero le toca a cada uno?

Por supuesto, para un niño de 6 años se trata de auténticos problemas, que habría que trabajar con calma: quizá en grupos, quizá con alguna indicación del profesor cuando hiciera falta. Para un niño que trabaja desde el principio de esta forma es mucho más sencillo ir desarrollando e integrando progresivamente los algoritmos necesarios para trabajar con números según éstos se van haciendo mayores.

Para terminar, voy a atreverme a hacer una propuesta concreta para el algoritmo de la división:

  • durante el primer ciclo de primaria, se deberían trabajar problemas como los mencionados anteriormente, incluyendo por supuesto conceptos como mitad, tercio, cuarto.
  • durante el segundo ciclo, y conforme se introduce la multiplicación, el tamaño de los números va aumentando. Un niño que ya sabe multiplicar puede plantearse el problema de repartir 170 «lo que sea» entre 9 «lo que sea». Y explorar distintas alternativas para hacer este cálculo tiene un valor formativo enorme.
    Creo que, hasta este punto, al 100% de acuerdo con lo que sugería el comentario de David.
  • en el tercer ciclo (y, desde mi punto de vista, no antes), se podrían empezar a introducir algoritmos para la división. ¿El estándar, ABN, otros? Mi opinión: no lo tengo claro. Y esto no es una forma diplomática de discrepar del comentario de David. Digo simplemente que no lo tengo claro, y que para poder formarme una  opinión tendría que ver antes de qué serían capaces los niños que llegaran al tercer ciclo, si durante los dos primeros se hubieran dedicado a las tareas propuestas anteriormente.