El vértice de las parábolas

El propósito de esta entrada es explicarme un poco mejor a cuenta del debate que tuvimos hace unos días, sobre el dibujo de parábolas, y que empezó con este tweet de @JosePolLezcano:

Me parece que el enfoque más extendido en nuestro país lo que pretende es llegar a un listado de instrucciones del tipo: 1) encuentro el vértice, 2) puntos de corte con los ejes, etc.

De alguna manera, el cómo encontrar el vértice me parece menos importante que resaltar que la idea que subyace a esta forma de proceder es algo así como: que al menos sepan dibujar la parábola, aunque no hayan entendido nada. Y el argumento que ya he oído bastantes veces es «que aprendan a hacerlo ahora, ya lo entenderán más adelante».

Bueno, estoy convencido de que este razonamiento está en la raíz de nuestro problema con la enseñanza de las matemáticas. Claro que algunos alumnos sí lo entienden más adelante. Hay gente que, a pesar de haber recibido una enseñanza «tradicional» consigue darle sentido a las cosas, atar cabos, y desarrollar interés por las matemáticas. Pero hay otros muchos alumnos que no consiguen entender casi nada, que se ven cada vez más obligados a reducirlo todo al aprendizaje memorístico, y que engrosan la legión del desinterés, el rechazo, y el fracaso con las matemáticas.

Una prueba evidente de que este enfoque no funciona es que cuando en una clase de 1º de Ingeniería de Telecomunicación(1) les pedía dibujar y = 1 - x^2, una parte significativa de los alumnos se encontraban con dificultades. No recordaban el procedimiento, ni nunca entendieron cómo dibujar parábolas «sencillas».

Antes de exponer algunas líneas alternativas que me parecen más adecuadas, una aclaración preventiva. Por supuesto que soy consciente de que cambiar el enfoque en un aula es complicado, y que las dificultades pueden venir de muchas direcciones. Lo que necesitaríamos es que el sistema se moviera en esa dirección. Pero un requisito previo para ello sería que una clara mayoría de los profesores sean conscientes del problema, y a veces dudo de que esto sea así.

Para empezar, la actividad del blog de Don Steward que aparece en el tweet inicial me parece más interesante que empezar a dibujar parábolas con el «método general». Después podríamos seguir tratando parábolas como y= (x-2)^2y= 1 - x^2, y= (x+1)^2-2, y= 2(x-3)^2+1

Llegados a este punto, el paso siguiente me parece claro: tratar el caso general agrupando cuadrados, y reduciéndolo a uno de estos.

Unos comentarios finales:

  1. Es verdad que si el objetivo de la unidad es que el alumno aprenda a dibujar el caso general, este enfoque necesita más tiempo, de eso no hay duda.
  2. El tratamiento que propongo aparece en los libros de texto. El problema, claro, es que no da tiempo a todo, y si hay que elegir, la inercia y esa tendencia a tratar el caso general hacen que casi siempre se opte por el enfoque «tradicional».
  3. Creo que la alternativa a la que se enfrenta el docente en la realidad es: dispongo de N horas para el tema, y quiero que mis alumnos lleguen a hacer ciertas cosas en el examen de la semana que viene. Por mucho que nos diseñen el siguiente examen, por poco que podamos intervenir, muchas veces es suficiente reducir la complejidad técnica de los ejercicios, para que sean tratables sin los «métodos generales».
  4. Si nos paramos a pensarlo, lo realmente importante no es qué van a saber hacer los alumnos en el examen siguiente, sino qué van a recordar un año después. Creo que si pensáramos esto más a menudo, muchas decisiones serían diferentes. Y sí, si en algún sitio hubiera dos grupos de alumnos A y B, similares, y en los que se pudieran hacer los dos tratamientos un curso dado, y ver un año después qué recuerda cada grupo de alumnos, me parece que tendríamos un estudio muy interesante.

Adenda: pocas horas después de publicar la entrada he visto los ejercicios de la prueba externa de 4º de la ESO de Madrid (¡gracias, @lolamenting!). Curiosamente, 2 de las 20 preguntas son sobre parábolas. Creo que merece la pena completar la entrada con ellas. Creo que sería muy interesante ver cómo las han contestado los alumnos.

parabola-1

parabola-2


(1) Sí, es verdad, Ingeniería de Telecomunicación ya no es lo que era, y en una universidad «normal», como la de Alcalá, hay alumnos de todo tipo, la nota de entrada es 5, o poco más. Pero son alumnos que han cursado, al menos la inmensa mayoría, Matemáticas II.

La probabilidad de las causas

Me parece una expresión muy adecuada para presentar la idea detrás del Teorema de Bayes: si un cierto test médico ha dado positivo, hay dos posibles causas, que la persona esté enferma, o que se trate de un falso positivo. ¿Cómo de probable es cada una de ellas? Esa es justamente la pregunta que contesta la conocida fórmula:

Bayes

Seguro que la mayoría de los lectores la conocen, es el resultado final del tema estándar de probabilidad elemental, y parte del temario de las matemáticas de bachillerato. Pero si algún lector no la conoce, que siga leyendo, por favor. Parte de esta entrada estará dedicada al significado de la fórmula de Bayes.

Pero antes, quería dedicarle un párrafo al libro en el que he descubierto la expresión «La probabilidad de las causas» para presentar la fórmula de Bayes. Es un texto escrito por dos compañeros de mi departamento. Aunque está pensado para un curso de Estadística de 1º de un Grado en el área de Ciencias/Ciencias de la Salud, creo que puede ser útil en Bachillerato, y en general para cualquiera que quiera entender las ideas de fondo de la Estadística. Porque lo que me ha resultado más atractivo del libro es su empeño (casi siempre coronado por el éxito) en transmitir las ideas de fondo tras las técnicas básicas de la Estadística. Es posible que me haya resultado tan interesante precisamente porque ha permitido que entienda algunas de las cosas que siempre me habían resultado escurridizas. El libro está accesible online y además está acompañado de una parte práctica que incluye una introducción a R.

Veamos ahora un ejemplo estándar de aplicación del Teorema de Bayes a un test de diagnóstico. Supongamos que cierta enfermedad afecta al 0,5 % de la población, y que tenemos una prueba para detectarla. Ninguna prueba es completamente fiable, y hay dos tipos de errores. Los falsos positivos son los casos en los que la prueba da positivo aunque la persona no está enferma, y los falsos negativos son los casos en los que la prueba da negativa aunque la persona está enferma. Es fácil imaginar que en la práctica existe una relación entre estos dos tipos de errores, y que para hacer muy pequeña la cantidad de falsos negativos necesitaremos pruebas muy sensibles, que tendrán, en general, una tasa mayor de falsos positivos. Compensar adecuadamente estos dos parámetros es uno de los problemas centrales del diseño de pruebas médicas, ya que el equilibrio deseable varía en cada situación. En nuestro ejemplo, y para simplificar, supondremos que no hay falsos negativos, y que los falsos positivos son el 5 %.

Supongamos ahora que elegimos una persona al azar, le hacemos la prueba y el resultado es positivo. ¿Qué probabilidad hay de que esté enferma? Si llamamos E al suceso «persona enferma»,  y + al suceso «resultado de la prueba positivo», en el lenguaje de la probabilidad condicionada la probabilidad que queremos calcular es P(E|+)Según la fórmula de Bayes,

enfermo-Bayes

Es decir, en términos de porcentajes, la probabilidad de que la persona esté enferma es aproximadamente el 9,09 %. No despreciable, desde luego. El resultado positivo de la prueba la ha multiplicado casi por 20, pero seguramente es más baja de lo que los lectores sin experiencia en este tema esperaban.

Creo que la forma más sencilla de entender este resultado (y de entender la fórmula de Bayes), es pensarlo en términos de fracciones. El rectángulo de la figura representa el total de la población, el rectángulo rojo de la esquina superior izquierda las personas enfermas, y el rectángulo rojo de la esquina inferior derecha los falsos positivos. El modelo está hecho a escala, de forma que las áreas relativas representan las probabilidades. En este modelo, la pregunta anterior – el resultado de la prueba en una persona elegida al azar es positivo, ¿cuál es la probabilidad de que esté enferma? – se convierte en: elegimos un punto rojo al azar (un resultado positivo). ¿Cuál es la probabilidad de que sea un punto de la esquina superior izquierda? Como el área total de los puntos rojos (como fracción del total) es 0,005 + 0,05 y el área de la esquina superior izquierda es 0,005, vemos que la probabilidad es, en efecto, 0,0909.

Bayes-ej

Concurso: la fórmula más inútil

El otro día me encontré en el cuaderno de mi hija (1º de Bachillerato) con una fórmula para determinar el ángulo que forman dos rectas (bueno, su tangente) a partir de las pendientes. Esto me ha decidido a arrancar una idea que llevaba un tiempo rondándome la cabeza, y es convocar un concurso para elegir la fórmula más inútil de nuestra enseñanza media. Mantendré aquí una lista con las contribuciones, desde luego.

Aquí va la primera:

formula-pendientes

¿Qué aporta memorizar una fórmula para calcular el ángulo directamente con las pendientes? ¿No es mucho más formativo saber, simplemente, que el ángulo de dos rectas es el ángulo que forman sus vectores directores (con la precaución de que sea el ángulo agudo, claro) y saber cómo obtener la pendiente del vector director, o viceversa?

El área lateral del cono

Tengo pendiente una entrada sobre el problema del exceso de fórmulas en el cálculo de áreas y volúmenes de figuras tridimensionales, pero antes quiero presentar hoy un ejemplo que me parece perfecto para ilustrar la problemática: el cálculo del área lateral del cono. En todos los libros de secundaria que he visto (sí, también en los de Singapur), se despacha el tema con la conocida fórmula A_l = \pi r g. Por supuesto que en algunos casos la fórmula se presenta con la correspondiente deducción, en tanto que en otros no. Pero cada vez estoy más convencido de que eso no es tan relevante en un caso como este. Por mucho cuidado que pongamos en deducir la fórmula, si luego los problemas se resuelven con la aplicación directa de la fórmula, lo que quedará para la gran mayoría de los alumnos será eso (bueno, realmente para una parte significativa de los alumnos quedará … nada, porque olvidarán esa fórmula pocas semanas después del examen correspondiente).

Por supuesto que en algunos casos hay que recurrir a la fórmula, no pretendo tener que deducir el volumen de la esfera cada vez que se presente el cálculo correspondiente. En esa próxima entrada que mencionaba antes lo que quiero es hacer una propuesta concreta del conjunto de fórmulas con el que creo que tendríamos que trabajar en este tema.

Pero el caso del área lateral del cono me parece un ejemplo perfecto en el que lo más formativo es prescindir de la fórmula. Cuando desarrollamos la superficie del cono, lo que se obtiene es un sector circular de radio la generatriz del cono, y del que para calcular su área solo necesitamos conocer el ángulo central. Este ángulo se puede obtener simplemente de igualar la longitud del arco de circunferencia del desarrollo con la circunferencia de la base del cono (en la figura). Por supuesto, la fórmula A_l = \pi r g se obtiene simplemente calculando el valor del ángulo y sustituyéndolo en la fórmula del área del sector circular.

cono

Me parece claro que la única ventaja del uso de la fórmula es la rapidez en la resolución del problema, y desde luego ese sería un factor decisivo si mi trabajo fuera hacer tales cálculos durante unas horas al día. Sin embargo, si de lo que se trata es de aprender geometría, creo que las ventajas del enfoque que prescinde de la fórmula son evidentes:

  • se trabaja el tema del desarrollo del cono. Un alumno que ha calculado un par de áreas laterales sin recurrir a la fórmula no volverá a tener dudas sobre qué se obtiene al desarrollar un cono.
  • se repasa el área del sector circular. Algún lector quizá objete que en este caso se está recurriendo a una fórmula, pero como escribí en la entrada anterior sobre el cálculo de áreas de figuras planas, esta es una de las fórmulas que no aparece en mi lista, porque se reduce a una aplicación de la proporcionalidad.
  • por último, y sobre todo, se deja claro que las matemáticas no son un conjunto de técnicas y fórmulas inconexas, sino una disciplina fuertemente interconectada. Aprender matemáticas es, en gran medida, entender esas conexiones.

Por supuesto, lo que me encuentro en mis alumnos de magisterio cuando les presento este enfoque es bastante resistencia. Llevan años acostumbrados a otra cosa. Pero creo que no me engaño al pensar que convenzo a una parte significativa de ellos de las ventajas de este enfoque. Una vez que se resignan a que tienen que entenderlo (en el problema correspondiente, les prohíbo explícitamente el uso de la fórmula), descubren que, al fin y al cabo, ¡no es tan difícil!

 

 

Uso y abuso de las fórmulas I – Áreas

Este verano las fórmulas han estado de moda. Primero, la de sostenibilidad de las pensiones; luego, la fórmula para el cálculo de las becas. Por supuesto, la reacción ante ellas ha sido la de siempre, en la línea con el aviso que cuentan los autores de libros de divulgación: con cada fórmula que aparezca en el libro perderás lectores. Las fórmulas no son más que un aspecto del lenguaje de las matemáticas, aunque es verdad que uno de los aspectos que puede resultar menos intuitivo. Sobre todo, si como con muchas otras cosas cometemos el error de introducir demasiadas y demasiado pronto, sin dedicarle el tiempo adecuado a la comprensión. Un tema en el que me parece que esto queda muy claro es en el cálculo de áreas, al final de primaria y durante la ESO. Voy a dedicar esta entrada a reflexionar sobre el uso de las fórmulas para el cálculo de áreas de figuras planas. Creo que todos los profesores de final de bachillerato, y primeros cursos universitarios nos hemos escandalizado ante alumnos que no recordaban fórmulas básicas. Me parece que la principal razón es que hay realmente demasiadas fórmulas, y que deberíamos pensar con cuidado cuáles son realmente necesarias.

Como primer ejemplo de fórmula superflua (bueno, más que superflua, diría perjudicial), pondría la del área de un polígono regular, en la figura.

area-n-gono

No se trata sólo de que la fórmula aparezca muchas veces sin justificación. Por mucho trabajo que nos tomemos en deducir la fórmula en clase, si después lo que hacemos al resolver los problemas es recurrir a la fórmula, lo que quedará en la cabeza de la mayoría de los alumnos será esa fórmula final (bueno, quedará durante un tiempo, claro, porque es un tipo de conocimiento que no integran en sus esquemas mentales, un conocimiento no significativo, y que la mayoría olvidarán un tiempo después). ¿Qué ventaja tiene esta fórmula sobre el hecho de que un polígono regular de n lados se puede descomponer en n triángulos iguales? Por el contrario, yo si le veo una ventaja a esta segunda opción: se inserta en cosas que ya se conocen, y permite repasar el área del triángulo cada vez que se resuelve un problema de esta forma. Se trata de un ejemplo de manual de aprendizaje significativo.

 ¿Y los trapecios? El otro día pregunté en mi clase de 3º de magisterio por el tema. Muy pocos, claramente por debajo del 10%, recordaban la fórmula para el área de un trapecio. De nuevo, una fórmula fácil de deducir pero, ¿merece la pena? ¿No es mucho mejor que se den cuenta de que un trapecio se descompone fácilmente en dos triángulos, ambos de altura h, uno con base b y otro con base a? En este caso, además, hacerlo así permite trabajar triángulos en posiciones «no usuales», una fuente de problemas para muchos alumnos hasta bien avanzada la secundaria.

trapecioPero sin duda las fórmulas que primero eliminaría de las aulas son las de la longitud de un arco de circunferencia y el área de un sector circular.

sector-circular

¿Por qué? Pues porque cada vez que las usamos estamos desperdiciando una magnífica oportunidad de repasar el concepto de proporcionalidad. Peor aún, cada vez que las utilizamos estamos reforzando esa imagen de las matemáticas elementales como un conjunto de recetas y fórmulas arbitrarias, sin conexión entre sí, y estamos perdiendo una magnífica oportunidad de mostrar las matemáticas como lo que son: un conjunto coherente y unificado de principios, conceptos y relaciones, donde abundan las conexiones entre distintas áreas, y donde nada es porque sí. Adaptando el título del blog a el tema del cálculo de áreas, diría que lo que hace falta es más razonamiento y menos fórmulas.

Para terminar, voy a atreverme a hacer un resumen de las fórmulas que creo necesarias para el tema de figuras planas:

  • área de los paralelogramos y de los triángulos
  • longitud de la circunferencia y área del círculo

¿Olvido alguna?

Por supuesto, cuando pasamos al tema de volúmenes de sólidos y área de superficies la situación empeora. Revisaré este tema en una próxima entrada.

Esta entrada participa en la edición 4.123105 del Carnaval de Matemáticas, cuyo anfitrión es el blog Cifras y Teclas.