Las demostraciones

La mayoría de los alumnos que entran en la universidad no saben distinguir cuándo se encuentran ante una demostración, cuándo ante un contraejemplo, cuándo ante la comprobación de un hecho en algún caso particular, y podríamos seguir. La causa es clara: la mayoría no se han tropezado nunca ni siquiera con un esbozo de argumento-demostración. Y la pena es que al no trabajar este tema les estamos privando de una de las competencias más importantes que les podrían aportar las matemáticas: la capacidad de razonar, argumentar, criticar, estudiar si un argumento es completo o no …

No se trata, por supuesto, de insistir en formalizar las ideas de manera prematura, ni obsesionarse con el rigor absoluto. Creo que la clave para poder trabajar este tema cuanto antes es lograr un equilibrio entre los argumentos y los hechos intuitivamente claros. Y, por supuesto, elegir muy bien las demostraciones que se van a trabajar.

¿Cuáles deberían ser las características de una demostración adecuada para primaria/secundaria? Desde mi punto de vista, las siguientes:

  1. que demuestre un hecho que no sea intuitivamente claro; de lo contrario, podemos crear el efecto del que ya hablé en esta entrada, a propósito del Teorema de Bolzano.
  2. que sea enriquecedora, en el sentido de que maneje conceptos que se están estudiando, y que por tanto ayude a entenderlos con mayor profundidad.
  3. que el alumno pueda, al menos, intentar descubrirla por sus propios medios, o con algunas indicaciones.
  4. que deje la puerta abierta a explorar variantes: generalizaciones, casos particulares, …

Por supuesto, hay algunas demostraciones que no cumplen todos estos requisitos, pero cuyo estudio me parece imprescindible, como el hecho de que la suma de los ángulos de un triángulo son 180º. Otras, como la demostración visual de la suma de los primeros n números impares, son totalmente recomendables. Su belleza y sencillez puede ayudar a que alguno de nuestros alumnos descubra el mundo de las matemáticas.  Pero si pensamos en un resultado cuya demostración cumpla los cuatro requisitos mencionados anteriormente, mi favorito ahora mismo es el siguiente:

Si tomamos 3 múltiplos de 4 consecutivos, uno de ellos (y solo uno) es múltiplo de 3.

El resultado se puede introducir ya al final de primaria, cuando se estudia la divisibilidad por primera vez. Aunque sólo sea a través de ejemplos, me parece una buena herramienta para trabajar múltiplos y divisores. Es posible que muchos de los alumnos tengan ya totalmente anestesiada la curiosidad, pero si en alguno de ellos sobrevive algo de interés, creo que propiedades como esta pueden despertar el deseo de aprender más sobre los números.

Además, la demostración es elemental y formativa. Se trata simplemente de darse cuenta de que, a partir del resto de dividir N entre 3, podemos calcular los restos de los siguientes múltiplos, N+4 y N+8. Creo que con alguna ayuda no es imposible que algunos alumnos descubran, o completen, el argumento por sí mismos.

Por último, el 3 y el 4 del enunciado no tienen mucho de especial (si algo, naturalmente). 4 se puede cambiar por 5 o por 7, y el resultado sigue siendo cierto. Por tanto, bien al nivel completamente elemental de estudiar ejemplos, o bien al nivel de determinar cuándo se puede generalizar el argumento-demostración, nos queda abierta la puerta a estudiar para qué parejas de números un resultado análogo sigue siendo cierto.

El Teorema de Bolzano

Para cumplir con el compromiso de cubrir en este blog los tres ciclos educativos, le dedicaré esta entrada a un tema de las matemáticas a nivel universitario. Y empezaré con una aclaración. A pesar de haber estado la mayor parte del tiempo dando clases a estudiantes de ingeniería (17 de un total de  20 años) debo reconocer que en este nivel mis ideas están menos claras que en lo que respecta a las matemáticas de la enseñanza primaria y la secundaria. Y creo que la razón es la siguiente: tengo una idea bastante clara de qué matemáticas debería conocer un estudiante que termina primaria y secundaria (y cómo se le deberían contar para que las haya entendido y pueda ponerlas en práctica). Sin embargo, no tengo tan claro qué matemáticas debe conocer, y cómo debe utilizarlas, un químico, un ingeniero de telecomunicación, un informático …

Por supuesto, alguna idea sí tengo en particular sobre las dos titulaciones en las que he pasado más tiempo (Ingeniería de Telecomunicación e Ingeniería Informática). Pero aún en estos casos, no es sencillo conseguir la visión general adecuada.

En todo caso, mi objetivo en este post es tratar un problema más general. Una actitud muy extendida entre los matemáticos es la siguiente: las matemáticas tienen un valor formativo intrínseco. Por tanto, si se le explican matemáticas a un ingeniero, la «estructura mental» que adquiere durante el estudio es muy útil, y esto justifica por sí solo el estudio de esta materia.

Estoy totalmente de acuerdo con esta última frase, pero en mi opinión el razonamiento es incompleto: las matemáticas serán útiles a los alumnos que las hayan entendido. Si por culpa de que los contenidos no son adecuados para la titulación, o no sabemos convencer a los alumnos de que, en efecto, sí son adecuados, o los presentamos de forma demasiado abstracta, será difícil que los estudiantes capten el valor del aprendizaje de las matemáticas. El resultado será seguramente que sólo un pequeño porcentaje de alumnos – quizá los que tengan más gusto por las matemáticas – disfrutará de las ventajas mencionadas en el párrafo anterior.

Un ejemplo concreto, para terminar (y justificar el título del post). Hace 10 años explicaba Cálculo I a estudiantes de Ingeniería de Telecomunicación, y me parecía que demostrar el Teorema de Bolzano era esencial. Encontré hace poco una cita de Henri Poincarè, y creo que en ella se explicita muy bien el problema. La traducción es mía y la cita está tomada de esta página de Morris Kline.

«Cuando un alumno empieza a estudiar matemáticas en la Universidad, tiene un concepto de fracción, una idea de continuidad, y del área de una superficie curva; considera evidente, por ejemplo, que una función continua no puede cambiar de signo sin anularse. Si el profesor le dice: «No, eso no es evidente; debemos demostrarlo», ¿qué pensará el infortunado estudiante? Pensará que las matemáticas son sólo una acumulación arbitraria de sutilezas inútiles; quizá le disgustará, o quizá se divertirá con ello, como con un juego, y llegará a un estado mental análogo al de los sofistas griegos. ¿Se puede entender una teoría si se construye desde el principio en la forma definitiva que impone el rigor lógico? No, no puede entenderse, sólo se aprende de memoria.»