El problema de la vaca

No sé si seguirá siendo conocido aquél problema sobre un ingeniero, un físico y un matemático, en el que el matemático terminaba diciendo “Sea una vaca redonda y sin rozamiento …”. No, no voy a hablar de ese problema, pero si de otro problema con una vaca, y que tiene algo tiene que ver con el modelado o, más en general, con la interacción matemáticas-realidad.

El disclaimer habitual cuando hablo de mis alumnos de magisterio: creo que son una buena muestra del alumno medio, y me encantaría recibir información sobre cómo funciona el problema en un aula de 3º-4º de ESO.

En el problema hay una vaca en el exterior de un recinto, y está atada a la valla. Se pregunta por la región en la que la vaca puede pastar, y en función de la geometría del corral, y de la longitud de la cuerda, pueden aparecer versiones de dificultades muy variadas, cosa que siempre me parece interesante. El caso es que ya lo había planteado un par de años, sin ningún dibujo de apoyo en el enunciado, y me encontraba con que, sencillamente, la gran mayoría  alumnos no entendían el problema cuando lo trabajaban antes de clase. De forma que este año me decidí a incluir un dibujo, y este era exactamente el enunciado que aparecía en la hoja de problemas de hace un par de semanas:la-vaca-y-el-corral

Lo sorprendente (al menos, a mi me lo parece) es que, al pedirles en clase que contestaran lo que había hecho sobre el primer apartado, y lo entregaran, una clara mayoría de los alumnos (al menos el 80%) sigue sin ser capaz de hacer algo coherente. La respuesta mayoritaria fue dibujar una circunferencia, con centro en el punto donde está atada la vaca, pero ignorando completamente el recinto rectangular. Y creo que esto pone de manifiesto un tema que no sé si se ha estudiado lo suficiente, y es la curiosa interacción (o falta de ella) entre los procesos mentales que usan muchos alumnos al tratar de resolver problemas de matemáticas, y los procesos del “sentido común”, que usan cuando no están “haciendo matemáticas”.

Por supuesto que es algo conocido, por ejemplo, cuando se dan respuestas claramente absurdas, sin reflexionar un momento sobre si la solución tiene o no algún sentido. El “tratamiento” para arreglar esto también me parece claro: plantear problemas que tengan conexión con el entorno conocido, y pedir que se reflexione sobre lo trabajado. Pero, ¿de verdad que no se le puede plantear un problema como éste a un alumno que no se haya dedicado al pastoreo?

Las tareas rutinarias, Polya dixit …

Una minientrada de vuelta a la actividad. Una de las tareas que me han tenido colapsado este mes de junio ha sido los trabajos fin de grado y máster. Ahora mismo empiezo a leer el último trabajo fin de máster, y comienza con una cita de Polya que conocía, pero que tenía olvidada. Me parece de total actualidad:

Un profesor de matemáticas tiene una gran oportunidad. Si dedica su tiempo a ejercitar a los alumnos en operaciones rutinarias, matará en  ellos el interés, impedirá su desarrollo intelectual y acabará desaprovechando su oportunidad. Pero si, por el contrario, pone a prueba la curiosidad de sus alumnos planteándoles problemas adecuados a sus conocimientos, y les ayuda a resolverlos por medio de preguntas estimulantes, podrá despertarles el gusto por el pensamiento independiente y proporcionarles ciertos recursos para ello.

George Polya (1945)

Dos rápidos comentarios:

  1. Nos hace mucha falta pensar en ello, no lo estamos haciendo bien: “el 90% de la población no sabe pensar“.
  2. Por supuesto que no es fácil cambiar la actitud de los alumnos, lo sé de sobras.

Proporcionalidad inversa

Se trata sin duda de uno de los conceptos mas escurridizos de la aritmética elemental. Cuando pregunto por el tema en clase al principio, los alumnos solo saben contestarme eso de “cuando una disminuye, la otra aumenta”. Pero si les pido detalles y les pregunto, por ejemplo, si el precio de un producto y su demanda son magnitudes inversamente proporcionales, ya que la demanda crece cuando el precio disminuye, entonces el silencio es total …

El primer problema que les planteo es el siguiente:

Un grupo de amigos hacen una excursión por el desierto y llevan reservas de agua para 12 días. Sin embargo, hace mas calor de lo normal, y beben el 50% mas de lo previsto. ¿Cuándo se les termina el agua?

Inmediatamente surge la respuesta de “6 días”. Pero entonces les planteo: bien, y si hubieran bebido el doble de lo previsto, ¿cuánto les habría durado el agua? Creo que es el momento del curso en el que el conflicto cognitivo es mas evidente en las miradas de la mayoría de los alumnos. Una vez que se dan cuenta de que 6 no puede ser la respuesta correcta, la siguiente propuesta suele ser 9, por aquello de “la mitad de la mitad” (está claro que nuestro cerebro es lineal). Hay que esperar unos minutos mas para que algún alumno dé con la respuesta correcta, normalmente con un argumento del tipo: “como beben el 50% mas, consumen en un día el agua que tenían previsto beber en 1,5 días. Por tanto, a los 8 días terminan el agua”.  Una de las cosas que mas me gustan de este ejemplo es que, al evitar darles una cantidad concreta, suelo conseguir que ni siquiera intenten recurrir a la regla de tres.

Reconozco que no es un tema sencillo, pero me parece simplemente terrible la forma en que es tratado en los textos que conozco. Y los problemas mas habituales, con pintores y demás, por supuesto enfocados a su resolución con la correspondiente regla de tres. Me parece que sería mucho mas útil centrar el estudio en las magnitudes físicas, que están estudiando en la asignatura correspondiente, y que además son mucho mas realistas que los ejemplos usuales: la velocidad y el tiempo en un movimiento rectilíneo uniforme, y la presión y el volumen de un gas a temperatura constante. Creo que desde el lado de la física las cosas no funcionan mucho mejor, a juzgar por las caras que observo al enunciar la Ley de Boyle-Mariotte en términos de proporcionalidad inversa. No he hecho una búsqueda exhaustiva, pero en el texto de 4º que tengo en casa lo que dice es que V y 1/P son magnitudes proporcionales. Vamos, el error habitual: tirar por el camino mas “sencillo” … que no lleva a ningún sitio. La proporcionalidad inversa es seguramente el concepto de las matemáticas básicas donde la interdisciplinariedad debería jugar un papel mas importante, por evidente y útil.

Mi objetivo final en este tema es que mis alumnos entiendan que si en un movimiento uniforme la velocidad aumenta el 20%, el tiempo de viaje no disminuye el 20% (los resultados en este punto, discretos, sigo dándole vueltas a cómo hacerlo mas comprensible).

Termino con dos problemas que me gustan especialmente. El primero, uno de esos problemas que aparecen en libros de aritmética clásica, y con los que nuestros alumnos encuentran bastantes dificultades, ya que se trata de razonar, y no de operar:

Una nave sale de Nápoles hacia Barcelona y hace su viaje en 30 días. Otra sale de Barcelona hacia Nápoles y hace el viaje en 20 días.
¿En qué punto del trayecto se encuentran? (Se supone, claro, que las dos naves van por la misma ruta y que cada una de ellas mantiene durante todo el viaje la misma velocidad).

Y el segundo, de cosecha propia, pensado para convencerles de que hay alternativas mejores que la regla de tres compuesta:

Una ciudad medieval dispone de provisiones para 6 meses. Justo antes de ser sitiados por un ejército enemigo, la cuarta parte de su población huye, y al verse sitiados deciden reducir la ración diaria a 2/3 de la prevista. ¿Cuánto tiempo les durarán las provisiones?

Mas problemas, menos cuentas

Ya está operativa la comunidad de Procomún Mas problemas, menos cuentas. Es una comunidad restringida: cualquiera puede ver los materiales, pero para contribuir hay que solicitar un permiso. Os animo a que lo hagáis, por supuesto, se trata de una simple formalidad para evitar robots y cosas por el estilo. Veremos si la comunidad contribuye en algo al objetivo de potenciar la resolución de problemas en las aulas.

Hacia un espacio para compartir buenos problemas

En los comentarios a esta entrada hemos mantenido un debate sobre la conveniencia de abrir un foro donde cualquier interesado pueda aportar problemas interesantes, y donde los usuarios puedan votar las propuestas, de manera que se consiga que los problemas con la mejor acogida sean fácilmente accesibles. Juan José López sugirió que una comunidad en Procomún podía ser una buena opción. Sólo falta el nombre de la comunidad. La idea es que el foro esté abierto a la participación de todos los interesados, y creo que lo mejor es empezar ya decidiendo el nombre entre todos. Recogeré las propuestas para el nombre en los comentarios, hasta el martes 17 a las 23:59, y organizaré una encuesta con las propuestas.

¡Problemas, problemas!

Creo que merece la pena escuchar este audio (14 seg).  Ya sé que puede parecer un montaje, pero es el recibimiento con que se encontró mi estudiante de doctorado cuando entró en un aula de 6º el pasado 18 de diciembre. El tema de su tesis es el estudio de estrategias que fomenten la autoconfianza de los alumnos ante la resolución de problemas.

Antes de continuar, una aclaración: soy perfectamente consciente de que, con toda probabilidad, la historia en un aula de secundaria sería bastante distinta. En este tema, como en muchos otros, creo que la clave está en primaria. Si un alumno termina 6º de Primaria con una actitud negativa ante la resolución de problemas, es muy difícil cambiarla luego en secundaria.

Espero poder tratar estos temas con mas profundidad en el futuro. El propósito de esta primera entrada del año es muy modesto: se trata simplemente de llamar la atención sobre el hecho de que la resolución de problemas puede resultar interesante para los alumnos. Porque otra cosa que me gustaría mencionar es que el tipo de problemas que estamos trabajando en las aulas no tienen componente de acertijo, o de juego. Por supuesto que ese tipo de actividades, con componente “lúdica” tiene su papel en el aprendizaje de las matemáticas, lo que digo simplemente es que la resolución de problemas, en sí misma, también puede ser interesante. La condición, claro está, es crear el ambiente de trabajo adecuado. En particular, no ignorar los errores de los alumnos (ni estigmatizarlos, claro) sino tomarlos como lo que son: ocasiones para detectar las dificultades y, por tanto, oportunidades de aprendizaje.

Para que quede del todo claro, termino con los enunciados de los problemas que trabajaron en el aula en la semana anterior al recibimiento del audio. Debo confesar que  vistos aquí los enunciados no me parecen especialmente inspirados, pero creo que eso refuerza el argumento de que generar el ambiente de trabajo adecuado es esencial. En particular, estoy de acuerdo en que el problema 3 es completamente artificial. Se trata de un problema copiado del libro de texto que ya habían trabajado el mes anterior, y queríamos ver cómo reaccionaban ante el problema, y qué es lo que les había quedado (la conclusión ha sido que … nada).

  1. Un depósito contiene 4500 litros de agua, se abre la llave del desagüe y se vacía a un ritmo de medio litro por segundo. Si la llave del desagüe permanece abierta un cuarto de hora. ¿Cuántos litros quedan en el depósito?
  2. ¿Cuánto pesa una bolsa de limones si una bolsa de naranjas pesa 3 kilos, y dos bolsas de naranjas pesan lo mismo que tres bolsas de limones?
  3. David tiene cintas para construir lazos de regalo de 3 longitudes diferentes, de 84 cm, 140 cm y 308 cm. El quiere cortar las cintas en trozos  del mismo tamaño para hacer lazos para sus regalos.
    • ¿Cuál será la longitud máxima de estos trozos sin que le sobre nada de ninguna de las cintas?
    • ¿Cuántos lazos de igual longitud puede hacer?
  4. Al inicio de un viaje el cuentakilómetros de un camión marca 24556 kilómetros. ¿Cuánto marcará después de un viaje de dos horas y media si circula a 80 km/h durante todo el trayecto?

Un cucurucho de pepitas de oro

Imagina que te dan un círculo de cartulina de radio 10 cm y te dicen que te llenarán con pepitas de oro el cucurucho que consigas hacer con la cartulina. ¿Cómo debería ser el cucurucho?

Me parece que este problema tiene todas las características de un buen problema: es natural, el enunciado es fácil de entender, la solución no es nada evidente “a primera vista” pero se puede obtener con los métodos de la ESO (bueno, si nos ayudamos de un software que represente la función volumen que se obtiene, y que nos permita obtener de forma aproximada el máximo de la función). Puede incluso plantearse, a nivel puramente manipulativo, al final de primaria.

Y es que los conos son cuerpos bastante aburridos si nos limitamos a calcular volúmenes y superficies con las fórmulas estándar, pero mucho mas interesantes si en lo que respecta a las fórmulas nos limitamos a la del volumen, y nos planteamos luego problemas basados en las relaciones entre el objeto tridimensional y su desarrollo plano, como ya comenté en esta entrada.

Los “problemas de ciclistas”

Dos ciclistas están en dos pueblos distintos, a una distancia de 112 km. Empiezan a pedalear, a la vez, para encontrarse. Uno va a 18 km/h, y el otro a 22 km/h. ¿Cuánto tiempo tardan en encontrarse? (Debes resolver el problema sin usar razonamientos algebraicos, y dar el resultado en horas, minutos y segundos).

Este es un problema que, con variantes, planteo cada año a mis estudiantes de Matemáticas I. Tras varios años de observar los patrones de respuesta de los alumnos, he detectado varias cosas interesantes, y que creo que pueden ser de interés para algunos lectores.

La primera observación es que, cuando no les permites usar el álgebra, la mayoría (hablo al menos de 3/4 partes de los alumnos, que sí lo intenta, porque hacen otros probleas de la hoja) no consiguen hacer nada. Este detalle de prohibirles el álgebra es un tema de reflexión en sí mismo, desde luego. Encantado de recibir ideas al respecto, y ya tengo apuntado el tema para una futura entrada. De momento, me limitaré a decir que, desde mi punto de vista, el uso del álgebra para resolver problemas como éste empobrece el aprendizaje de la aritmética.

En la clase en la que tratamos los problemas, los alumnos a los que pregunté –y que habían hecho algo– empezaron con la idea de que “es lo mismo que si los dos ciclistas se movieran a una velocidad de 20 km/h”. Tratar de convencerles (a ellos y al resto de la clase) de que también es lo mismo que si un solo ciclista se mueve a 40 km/h, costó sorprendentemente mas. De hecho, creo que no lo conseguí hasta que no cambié ciclistas por pintores, la carretara por una valla (y los km por m, por aquello de las “matemáticas realistas”).

Pero la segunda parte me parece también interesante: el problema que tenemos ahora es cuánto se tarda en recorrer 112 km si nos movemos a 40 km/h. Supongo que entendieron que esa prohibición del álgebra se extendía a “fórmulas de la física” (así le llaman a cosas como e=v.t) — y aquí acertaron, esa era mi idea–. Lo que hicieron entonces es razonar que en 2 horas recorren 80 km, en media hora mas otros 20 km, y continuaron dividiendo hasta la solución final. Ya se que algún lector puede estar pensando que no eran “soluciones independientes”. Fueron tres grupos, y digamos que pregunté lo suficiente para convencerme de que sus razonamientos sí eran personales, además de que en los tres casos se trataba de alumnos que apuntan muy buenas maneras en la asignatura.

Y todo esto, a pesar de que la semana anterior habíamos trabajado en la teoría la división, y nos habíamos parado en sus dos significados. Esta dificultad no me sorprendió, ya lo había visto otros años (por eso el problema estaba formulado de esta forma; si la distancia hubiera sido de 120 km, no habrían tenido ningún problema con esta parte). Resulta realmente llamativa la dificultad de comprensión de la división cuando el cociente o el divisor no son números enteros. La causa la tengo clara: demasiadas divisiones hechas en primaria, con poca atención a su significado.

 

El área lateral del cono

Tengo pendiente una entrada sobre el problema del exceso de fórmulas en el cálculo de áreas y volúmenes de figuras tridimensionales, pero antes quiero presentar hoy un ejemplo que me parece perfecto para ilustrar la problemática: el cálculo del área lateral del cono. En todos los libros de secundaria que he visto (sí, también en los de Singapur), se despacha el tema con la conocida fórmula A_l = \pi r g. Por supuesto que en algunos casos la fórmula se presenta con la correspondiente deducción, en tanto que en otros no. Pero cada vez estoy más convencido de que eso no es tan relevante en un caso como este. Por mucho cuidado que pongamos en deducir la fórmula, si luego los problemas se resuelven con la aplicación directa de la fórmula, lo que quedará para la gran mayoría de los alumnos será eso (bueno, realmente para una parte significativa de los alumnos quedará … nada, porque olvidarán esa fórmula pocas semanas después del examen correspondiente).

Por supuesto que en algunos casos hay que recurrir a la fórmula, no pretendo tener que deducir el volumen de la esfera cada vez que se presente el cálculo correspondiente. En esa próxima entrada que mencionaba antes lo que quiero es hacer una propuesta concreta del conjunto de fórmulas con el que creo que tendríamos que trabajar en este tema.

Pero el caso del área lateral del cono me parece un ejemplo perfecto en el que lo más formativo es prescindir de la fórmula. Cuando desarrollamos la superficie del cono, lo que se obtiene es un sector circular de radio la generatriz del cono, y del que para calcular su área solo necesitamos conocer el ángulo central. Este ángulo se puede obtener simplemente de igualar la longitud del arco de circunferencia del desarrollo con la circunferencia de la base del cono (en la figura). Por supuesto, la fórmula A_l = \pi r g se obtiene simplemente calculando el valor del ángulo y sustituyéndolo en la fórmula del área del sector circular.

cono

Me parece claro que la única ventaja del uso de la fórmula es la rapidez en la resolución del problema, y desde luego ese sería un factor decisivo si mi trabajo fuera hacer tales cálculos durante unas horas al día. Sin embargo, si de lo que se trata es de aprender geometría, creo que las ventajas del enfoque que prescinde de la fórmula son evidentes:

  • se trabaja el tema del desarrollo del cono. Un alumno que ha calculado un par de áreas laterales sin recurrir a la fórmula no volverá a tener dudas sobre qué se obtiene al desarrollar un cono.
  • se repasa el área del sector circular. Algún lector quizá objete que en este caso se está recurriendo a una fórmula, pero como escribí en la entrada anterior sobre el cálculo de áreas de figuras planas, esta es una de las fórmulas que no aparece en mi lista, porque se reduce a una aplicación de la proporcionalidad.
  • por último, y sobre todo, se deja claro que las matemáticas no son un conjunto de técnicas y fórmulas inconexas, sino una disciplina fuertemente interconectada. Aprender matemáticas es, en gran medida, entender esas conexiones.

Por supuesto, lo que me encuentro en mis alumnos de magisterio cuando les presento este enfoque es bastante resistencia. Llevan años acostumbrados a otra cosa. Pero creo que no me engaño al pensar que convenzo a una parte significativa de ellos de las ventajas de este enfoque. Una vez que se resignan a que tienen que entenderlo (en el problema correspondiente, les prohíbo explícitamente el uso de la fórmula), descubren que, al fin y al cabo, ¡no es tan difícil!