Geometría y razonamiento (II)

En los comentarios de la entrada anterior sobre este mismo tema surgió la problemática de demostrar cosas que “son evidentes”. Es cierto que demostrar cosas que “se ven” tiene sus peligros, y ya escribí sobre ello en esta entrada sobre el Teorema de Bolzano. Lo que quiero presentar hoy son los dos resultados que más me gustan para intentar combatir este problema. El resultado no es nada evidente, quizá hasta desafía la intuición, pero se puede demostrar con geometría elemental.

El primero es sobre ángulos en la circunferencia. Me voy a permitir presentar el resultado, para los lectores que estén en mi situación de hace un par de años. Es un resultado que tenía completamente olvidado cuando lo redescubrí preparando las matemáticas para maestros, y que creo recordar que sólo lo estudié en el dibujo técnico de un primer curso de ingeniería, donde usamos el libro de Puig-Adam de Geometría Métrica (estoy hablando del curso 83-84,  estoy seguro de que de este tipo de cosas no quedan rastros en las ingenierías, seguramente de forma totalmente justificada). Lo que no sé si es tan explicable es que no volviera a oír hablar de estas cosas a lo largo de una licenciatura en matemáticas.

Los ánguloarco-capazs \angle APB y \angle AQB se llaman ángulos inscritos, y el ángulo \angle ACB es el ángulo central correspondiente. El resultado afirma que todo ángulo inscrito es la mitad del central correspondiente. En particular, por tanto, los ángulos \angle APB y \angle AQB son iguales, e iguales al ángulo \angle AXB si X es cualquier punto del arco de circunferencia de color morado en la figura, que se llama arco capaz del segmento AB. Pues bien, que el ángulo \angle AXB sea el mismo en todo el arco de circunferencia, es un resultado que no es muy intuitivo, en particular cuando el punto X está cerca del punto B. Hay varias demostraciones de este resultado. Esta es la que me parece más sencilla de entender:

Veamos priarco-capaz-caso-1mero el caso en que el segmento PA es un diámetro, como en la figura. En este caso, el resultado de deduce de manera inmediata de la observación de que el triángulo CBP es isósceles.

La segunda parte de la demostración se basa en la observación de que el caso general se puede reducir al primero, considerando el diámetro que pasa por C, tal y como se muestra en la figura. El resto es sólo escribir el argumento, aunque es cierto que si se decide hacerlo la elección del lenguaje más adecuado es importante.

arco-capaz-caso-2

El segundo es sobre secciones de pirámides (y prismas): si consideramos dos pirámides de igual base y altura, como las de la figura, y las cortamos por un plano horizontal, las secciones que se obtienen son iguales.

piramideLa demostración de esto la voy a dejar como “ejercicio para el lector”. Me parece una aplicación muy bonita de la semejanza de triángulos, ya que lo que hay que hacer es simplemente demostrar que, en los dos casos:

  1. el triángulo que se obtiene al cortar la pirámide con un plano horizontal es semejante a la base.
  2. la razón de semejanza depende sólo de la altura del plano de corte.

Un último comentario: en especial en este segundo ejemplo, lo que he visto en muchos de mis alumnos es una especie de “reacción complementaria” a la que se produce cuando les demuestras algo “que se ve”. Este resultado no es muy intuitivo, y cuando termino la demostración lo que veo en muchas caras es algo así como “vale, las matemáticas dirán lo que quieras, pero yo sigo viendo otra cosa” …

Anuncios

El tránsito de Venus

Hoy quiero presentar un problema que se me ocurrió intentando proponer algo un poco distinto a los problemas usuales de semejanza de triángulos. Este es el enunciado tal cual lo escribí en la hoja de problemas semanal:

transito-VenusEra “el problema difícil” y cuando lo trabajamos en clase ya me esperaba que les habría generado dificultades. La primera era ya, de entrada, interpretar el enunciado (y la fotografía). Nada nuevo: ya sabemos todos lo que les cuesta a la mayoría de los alumnos conectar realidad y matemáticas. La segunda dificultad fue la falta de datos. ¿Qué se puede medir en la foto? Una vez descubierto que la razón entre el tamaño del “puntito negro” y el sol es, aproximadamente, 1/30, apareció la dificultad  fundamental, que resultó mucho más seria de lo que había pensado. Estuvimos un buen rato dándole vueltas al tema de que esa razón no es la razón entre los diámetros de Venus y el Sol, que lo que se ve en la foto es la “sombra” de Venus, y lo que medimos es el “diámetro aparente”. Me parece que la mitad de la clase consiguió entenderlo, aunque costó un buen rato; tengo claro que otra mitad desistió.

Creo que no es mal problema para trabajar en 3º-4º ESO. Cierto: no es sencillo, y hay que dedicarle cierto tiempo. ¿Qué os parece?

Geometría y razonamiento

Hoy tengo que escribir sobre un fracaso. Una de las asignaturas que imparto en magisterio es Matemáticas II, y está dedicada esencialmente a la Geometría (mas un tema de Estadística y Probabilidad). Como ya he escrito en alguna ocasión (y, por supuesto, no estoy descubriendo nada), un valor esencial de la geometría es que es el marco ideal para iniciarse en el razonamiento lógico. Aunque este aspecto está completamente desaparecido de nuestro currículo, uno de los objetivos importantes en mi planteamiento de la asignatura es intentar solventar ese problema. Como les digo a mis alumnos cuanto protestan porque les pido cosas que no están en los programas, espero que muchos de ellos estén dando clase en el año 2050, y espero que para entonces hayamos conseguido reconducir nuestro currículo de matemáticas básicas.

Pero tampoco este segundo año he quedado mínimamente satisfecho con el resultado. La realidad es que la proporción de alumnos que consiguen completar un argumento, por sencillo que sea, al final del curso, ha sido deprimentemente baja.

Como ya era el segundo año que impartía la asignatura, insistí una y otra vez en que los datos eran los que daba el enunciado y no lo que parecía que ocurría en la figura “a ojo”. La corrección del parcial me enfrentó de bruces con la realidad de lo difícil que es cambiar los esquemas mentales de las personas (por cierto, uno de los hechos básicos de la psicología al que me parece que no se presta suficiente atención en la formación del profesorado, y que tenemos que ir descubriendo tropezón a tropezón). Éste era el problema:

congruencia-ex-parcial

Los argumentos que usaron aproximadamente el 90% de los alumnos se sustentaban, de una manera o de otra, en que la figura es simétrica respecto de la recta definida por A y R (por supuesto, sin argumentarlo en absoluto: simplemente, “se ve”). El resultado me pilló completamente de sorpresa. Tenía claro que seguramente para la mitad de los alumnos el problema resultaría demasiado complicado, pero hubo muchos casos de alumnos trabajadores, y que me parecía que estaban siguiendo la asignatura, que cometieron el error ante el que les había tratado de prevenir de forma reiterada. (1)

Por supuesto, tras el parcial no quedó otra que seguir insistiéndoles en los errores cometidos, y en el examen final intenté buscar un ejercicio menos complicado, pero que también requiriera un mínimo nivel de razonamiento. El problema lo encontré en este blog, que me descubrió @DavidBarba2 y que me parece absolutamente recomendable. Es el apartado b) de este problema:

bisectrices-ex-finalUn detalle que me parece importante, y que quiero aclarar, es que para este tipo de preguntas no estoy especialmente interesado en el “rigor formal” o en el uso exhaustivo del lenguaje matemático. Un error que me parece muy frecuente en el inicio del razonamiento es introducir demasiado pronto un exceso de formalismo, que se convierte en una dificultad adicional (como creo que ocurre en las “two column proofs” de la geometría de High School en EEUU).

Un argumento del estilo de:

  • como las rectas r y s son paralelas, los ángulos a y b son suplementarios
  • por tanto, la mitad de a mas la mitad de b suman 90 grados
  • luego el tercer ángulo del triángulo PQZ es recto

me parece perfectamente válido, y así lo traté en la corrección.

Los resultados fueron mejores que en el caso anterior: 50 de los 152 alumnos presentados contestaron la pregunta de forma esencialmente correcta. De todas formas, el resultado sigue sin parecerme satisfactorio dada la (escasa) dificultad de la cuestión. Y, por supuesto, una cantidad aproximadamente igual contestaron algo en la línea de “se ve” que los segmentos PZ y QZ salen perpendiculares, y por tanto el triángulo es rectángulo …

Reconozco que esta entrada ha sido básicamente una catarsis personal. Querría terminar con mis conclusiones básicas. Como siempre que hablo de mis estudiantes de magisterio, debo aclarar que en ellos veo a un estudiante medio de nuestra ESO.

  • casi todos llegan sin distinguir algo que “parece ser cierto” de algo que “podemos comprobar que es cierto”. Más aún, una buena parte sigue sin distinguirlo al final de curso.
  • llegan sin la idea de qué significa comprobar (demostrar) una afirmación, y está claro que menos de la mitad lo entienden tras dedicarle horas al tema.
  • más aún: la mayoría llega en el nivel 1 de van Hiele (no distinguen definiciones de propiedades). Se supone que es el nivel de un niño de primer ciclo de primaria. Tras tantos años estancados en ese punto, muchos de ellos no consiguen progresar …

(1) Aclaración: evidentemente, siempre que nos enfrentamos a un problema hay que tener claro de qué herramientas disponemos, y quizá no es del todo evidente en el texto. Los criterios de congruencia de triángulos son uno de los contenidos importantes del curso.