A vueltas con los libros de texto

Como cada comienzo de curso, hemos asistido al cruce de argumentos habitual sobre el tema de los libros de texto, su excesivo coste, el buen o mal uso que se hace en las aulas, hasta he llegado a ver que el libro de texto, como concepto en sí mismo, no porque sea de mala calidad, es en parte responsable del fracaso escolar

Como llevo un tiempo sin escribir sobre el tema, creo que es hora de volver a tratarlo. Me gustaría centrarme en los aspectos puramente educativos, y para tratar de evitar que un posible debate se desvíe por otros caminos, voy a empezar con una serie de comentarios preventivos.

  • Sí, desde hace unos meses estoy involucrado en un proyecto editorial. No, esa no es la causa de que defienda, con los matices que sea, las ventajas de unos buenos libros de texto. La flecha de la causalidad va en dirección contraria: como siempre he pensado que un buen libro de texto es una buena herramienta, tanto para el profesor como para el alumno, cuando ha surgido la ocasión no he dudado en involucrarme en un proyecto que trata de llevar mejores textos de matemáticas a nuestras aulas.
  • Muchas de las quejas que se escuchan sobre el excesivo coste de los libros de texto en España pueden estar bastante justificadas. Pero eso puede tener que ver con el excesivo número de asignaturas que hay en todos nuestros niveles educativos (bueno, ahí la universidad es una excepción, creo que reducir el número de asignaturas en los grados fue lo más positivo de la “reforma Bolonia” de hace unos años).
  • Desde luego, el coste de los libros de texto no debería ser una barrera para el acceso a la educación de los niños de familias en situaciones económicas difíciles. Y me parece perfectamente defendible que los libros de texto los deberíamos pagar entre todos, vía impuestos, y no las familias. Pero es una decisión política, que se debe tomar en los foros correspondientes.
  • Un lugar común es que a las editoriales no les interesa la educación, que “solo quieren ganar dinero”. Bueno, eso es bastante cierto, ya lo pensaba y nada de lo que he visto últimamente me ha hecho cambiar de opinión. Pero eso no pasa solo con las editoriales y la educación, sino con casi todo en la sociedad en que vivimos, empezando por ejemplo con temas igual de importantes, como la alimentación o la sanidad. Si estamos tranquilos con respecto a lo que comeremos mañana (al menos, los que tenemos la suerte de disfrutar de una situación económica desahogada) no es porque tengamos alrededor entes solidarios que se preocupen de nuestras necesidades, sino porque confiamos en el afán de lucro del panadero, el supermercado, o el restaurador que ponen a nuestra disposición lo necesario, a cambio, claro, de un pago. El tema de la sanidad tiene todavía más aristas, como el papel de los laboratorios farmacéuticos en algunos de los escándalos que han surgido últimamente, el problema de la distribución de medicamentos en los países menos desarrollados, o la falta de investigación en el desarrollo de nuevos antibióticos, por las pocas perspectivas de rendimiento económico que tiene. Creo que los gobiernos deberían tener un papel mucho más activo en este tema, y corregir muchas de las prácticas que vemos. Lo que no me parece una alternativa es recomendar a los ambulatorios que cultiven sus propias cepas de penicilina. En resumen: no creo que sea ningún problema que las editoriales quieran ganar dinero. Creo que el problema es que en España lo consigan con productos tan mediocres.
  • Seguiré usando el término “libro de texto”, aunque es evidente que estamos en un proceso de cambio, y que no está nada claro qué tipo de materiales veremos en nuestras aulas dentro de 10 años, creo que falta mucho por aprender sobre las implicaciones cognitivas de distintas opciones, y hay datos como éste, como mínimo, dan que pensar.

Paso ya al debate estrictamente educativo.

  • El primer argumento que se suele escuchar es que “un buen profesor no necesita un libro de texto”. Eso es cierto, sin duda. Un buen docente (o, mejor, un equipo bien cohesionado) bien formado y trabajador puede hacer un trabajo estupendo sin libros de texto. Lo sé, conozco ejemplos. La pregunta importante es si esa práctica es generalizable a todo el sistema escolar. No es fácil conseguir datos fiables de esto, pero las informaciones que me llegan es que, en los países donde parece que las cosas funcionan razonablemente bien, uno de los factores que ayudan son unos buenos libros de texto. Si algún lector conoce algún país donde parezca que los resultados educativos son buenos, y que ha decidido prescindir de los libros de texto, me encantaría explorar el caso.
  • El problema es cuando se le da la vuelta a la afirmación anterior, cometiendo la falacia más común, la de dar la vuelta a una implicación que solo funciona en un sentido, y se afirma, o se transmite, que los profesores que usan libros de texto es porque no son tan buenos, o tan trabajadores, o les falta iniciativa. Y creo que esta visión se ha extendido bastante, en particular en nuestros centros de formación de maestros. La visión mayoritaria es que un buen maestro elabora sus propios materiales, y en lugar de prepararles para elegir buenos textos y usarlos bien se les prepara para que elaboren unidades didácticas. Aquí la universidad está a la cabeza, porque la ANECA, el organismo que rige la carrera profesional de los profesores universitarios (hay que ser evaluado por ella cada vez que queremos progresar), decidió hace años “dar puntos” a los profesores que elaboran sus propios materiales. Puestas así las cosas, cuando el profesor X tiene que impartir el curso próximo una asignatura como Cálculo para Ingenieros, tiene dos opciones:
      • recurrir a uno de los 3 ó 4 manuales estándar de la asignatura, que son los usados en las mejores universidades del mundo. Además de que no recibirá ninguno de esos puntos si opta por esto, tendrá que luchar contra lo poco acostumbrados que estarán sus alumnos a usar un libro de texto. La mayoría habrán recurrido a ellos solo para hacer algún trabajo, y para hacer los ejercicios K y L de la página J.
      • elaborar sus propios apuntes. En este caso, los alumnos estarán más contentos, y el profesor recibirá esos puntitos de la ANECA. Por supuesto, nadie comprobará si esos apuntes son buenos, malos o regulares. Esta situación me temo que va a peor, porque se está trasladando al procedimiento de evaluación de la docencia que están implementando cada vez más universidades, presionadas por la superioridad en ese sentido.

    Aunque cada vez es más complicado saber qué se hace en cada sitio (una consecuencia creo que desafortunada del desarrollo de los entornos de ayuda al aprendizaje virtual), no es difícil imaginar hacia dónde se deslizan las cosas con la actual estructura de incentivos …

  • Lo que me resulta más llamativo es que esta situación de una mayoría de estudiantes nada acostumbrados a usar con criterio libros de texto convive con el énfasis que se pone en la importancia del “aprender a aprender”. Es verdad que en estos tiempos cualquiera que quiera aprender algo tiene a su disposición materiales estupendos, pero me parece difícil que alguien que está aprendiendo tenga el criterio para elegir algunos de entre los más adecuados. Ya sé que hay experiencias realmente sorprendentes sobre lo que se puede conseguir en esta dirección, lo que no conozco es comparativas con lo que habrían conseguido esos niños con buenos libros de texto y buenos maestros a su alrededor.
  • Una imagen que escuché en una presentación de Marshall Cavendish, que no había oído, y que me ha gustado mucho, es esta analogía con la música: el libro de texto es la partitura, y el profesor es el intérprete. Me encanta el jazz, y por supuesto que valoro la música improvisada, pero también soy consciente de lo que aporta un buen intérprete a cualquier partitura, por muy escrita que ya esté. En el aula, un docente no tiene por qué limitarse a seguir mecánicamente el libro de texto, como a veces se critica. Cuando un niño dice “no lo entiendo”, o hace una pregunta interesante, o hace algo mal, la reacción del profesor para conducir la situación, localizar la dificultad de aprendizaje, o buscar un enfoque alternativo que solucione el problema, es lo que diferencia al docente excelente del bueno, o del menos bueno.
  • En resumen, a la afirmación del principio de “un buen profesor no necesita un libro de texto” (que como dije suscribo) contrapondría esta otra, que también me parece cierta: “un buen libro de texto es una excelente herramienta para cualquier profesor (y para los alumnos)”.
Anuncios

Y en física, ¿no es un poco disparatado?

Parece mentira, creía que estaba curado de espantos, pero me he llevado otra buena sorpresa, esta vez con la física. Resulta que esta es la ecuación que se les presenta a los alumnos para estudiar las ondas:

y(x,t) = A \sin (\omega t + k x - \varphi_0)

Y esta vez he comprobado que no se trata del libro de texto, sino que aparece explícitamente en el currículo de la LOMCE:

pag. 275 del currículo (BOE 03-01-2015)

Criterios de evaluación:

4. Interpretar la doble periodicidad de una onda a partir de su frecuencia y su número de onda.

Estándares de aprendizaje:

4.1 Dada la expresión matemática de una onda, justifica la doble periodicidad con respecto a la posición y al tiempo.

Tengo claro que nunca había visto la ecuación formulada en esos términos, y conste que estudié – y aprobé – la física de 1º de una ingeniería en los 80. También tengo claro que cuando trabajaba con mis alumnos de Ingeniería de Telecomunicación, me daba por satisfecho si manejaban con cierta solvencia la ecuación que yo había visto hasta ahora, que presenta la onda solo como función del tiempo y(t) = A \sin (\omega t  - \varphi_0)

¿Realmente pretendemos que los alumnos en bachillerato entiendan las funciones de dos variables? Mi sensación es la de una de esas películas de Buster Keaton: vamos en un tren, cuesta abajo, y con los frenos estropeados. Y descubrimos que el maquinista se ha vuelto loco, y que sigue echando carbón en la caldera …

 

Una nota sobre formación matemática de maestros

Este artículo de El Diario, de @hcebolla,  habla sobre calidad de profesores, y creo que su lectura merece la pena. Pero lo que me ha dejado impactado es este gráfico:

TEDS-M-España-EEUU

Los datos corresponden al estudio TEDS-M sobre formación matemática de maestros (en concreto, de estudiantes de último año de la antigua diplomatura de magisterio de primaria). Los datos de la izquierda son los resultados de los diferentes centros de formación de maestros españoles que participaron (casi todos los pertenecientes a universidades públicas, y algunos de universidades privadas). Los datos de la derecha corresponden a los centros de EEUU. Como en casi todo estudio, la variabilidad en los resultados de los centros estadounidenses es llamativa, pero también me resulta de lo más llamativa la uniformidad (en la mediocridad) de los resultados de los centros españoles.

No conozco otro estudio con esta uniformidad. En PISA 2012, por ejemplo, los resultados por comunidades autónomas variaron entre los 517 puntos de Navarra y los 461 puntos de Extremadura. En TEDS-M, donde la unidad de estudio es de menor tamaño, lo esperable sería que la variabilidad fuera mayor.

Llevo unos días dándole vueltas al tema, y sigo tan perdido como al principio, de forma que en lugar de aventurar una explicación prefiero abrir la puerta a un posible debate.

Hipónimos e hiperónimos

Somos el país de la taxonomía, nos encanta dar nombres, clasificar, y luego poder pedir a nuestros alumnos que memoricen todo lo que se nos ocurra. Resulta simplemente kafkiano que, en un descanso de una lectura de un Trabajo Fin de Grado, en el que compruebas una vez más que muchos de nuestros graduados tienen serios problemas para expresarse con una mínima corrección, puedas escuchar a tu hija, que cursa 1º de Bachillerato, que está estudiando un examen de lengua, y está repasando los sustantivos hipónimos e hiperónimos.
Simplemente, estamos locos.

La probabilidad de las causas

Me parece una expresión muy adecuada para presentar la idea detrás del Teorema de Bayes: si un cierto test médico ha dado positivo, hay dos posibles causas, que la persona esté enferma, o que se trate de un falso positivo. ¿Cómo de probable es cada una de ellas? Esa es justamente la pregunta que contesta la conocida fórmula:

Bayes

Seguro que la mayoría de los lectores la conocen, es el resultado final del tema estándar de probabilidad elemental, y parte del temario de las matemáticas de bachillerato. Pero si algún lector no la conoce, que siga leyendo, por favor. Parte de esta entrada estará dedicada al significado de la fórmula de Bayes.

Pero antes, quería dedicarle un párrafo al libro en el que he descubierto la expresión “La probabilidad de las causas” para presentar la fórmula de Bayes. Es un texto escrito por dos compañeros de mi departamento. Aunque está pensado para un curso de Estadística de 1º de un Grado en el área de Ciencias/Ciencias de la Salud, creo que puede ser útil en Bachillerato, y en general para cualquiera que quiera entender las ideas de fondo de la Estadística. Porque lo que me ha resultado más atractivo del libro es su empeño (casi siempre coronado por el éxito) en transmitir las ideas de fondo tras las técnicas básicas de la Estadística. Es posible que me haya resultado tan interesante precisamente porque ha permitido que entienda algunas de las cosas que siempre me habían resultado escurridizas. El libro está accesible online y además está acompañado de una parte práctica que incluye una introducción a R.

Veamos ahora un ejemplo estándar de aplicación del Teorema de Bayes a un test de diagnóstico. Supongamos que cierta enfermedad afecta al 0,5 % de la población, y que tenemos una prueba para detectarla. Ninguna prueba es completamente fiable, y hay dos tipos de errores. Los falsos positivos son los casos en los que la prueba da positivo aunque la persona no está enferma, y los falsos negativos son los casos en los que la prueba da negativa aunque la persona está enferma. Es fácil imaginar que en la práctica existe una relación entre estos dos tipos de errores, y que para hacer muy pequeña la cantidad de falsos negativos necesitaremos pruebas muy sensibles, que tendrán, en general, una tasa mayor de falsos positivos. Compensar adecuadamente estos dos parámetros es uno de los problemas centrales del diseño de pruebas médicas, ya que el equilibrio deseable varía en cada situación. En nuestro ejemplo, y para simplificar, supondremos que no hay falsos negativos, y que los falsos positivos son el 5 %.

Supongamos ahora que elegimos una persona al azar, le hacemos la prueba y el resultado es positivo. ¿Qué probabilidad hay de que esté enferma? Si llamamos E al suceso “persona enferma”,  y + al suceso “resultado de la prueba positivo”, en el lenguaje de la probabilidad condicionada la probabilidad que queremos calcular es P(E|+)Según la fórmula de Bayes,

enfermo-Bayes

Es decir, en términos de porcentajes, la probabilidad de que la persona esté enferma es aproximadamente el 9,09 %. No despreciable, desde luego. El resultado positivo de la prueba la ha multiplicado casi por 20, pero seguramente es más baja de lo que los lectores sin experiencia en este tema esperaban.

Creo que la forma más sencilla de entender este resultado (y de entender la fórmula de Bayes), es pensarlo en términos de fracciones. El rectángulo de la figura representa el total de la población, el rectángulo rojo de la esquina superior izquierda las personas enfermas, y el rectángulo rojo de la esquina inferior derecha los falsos positivos. El modelo está hecho a escala, de forma que las áreas relativas representan las probabilidades. En este modelo, la pregunta anterior – el resultado de la prueba en una persona elegida al azar es positivo, ¿cuál es la probabilidad de que esté enferma? – se convierte en: elegimos un punto rojo al azar (un resultado positivo). ¿Cuál es la probabilidad de que sea un punto de la esquina superior izquierda? Como el área total de los puntos rojos (como fracción del total) es 0,005 + 0,05 y el área de la esquina superior izquierda es 0,005, vemos que la probabilidad es, en efecto, 0,0909.

Bayes-ej

El sorteo de la Champions y los modelos matemáticos

Actualización 3: un lector pregunta por los detalles del sorteo. Creo que lo razonable es aclarar eso al principio. Se trata de un sorteo puro, cualquier combinación es igualmente probable. Los detalles de cómo se lleva a cabo el sorteo “real” son irrelevantes, eso es parte del tema de “elegir bien el modelo”, sobre el que quería escribir en esta entrada. En todo caso, simplemente hay 8 bolas en un bombo, y se van extrayendo una a una. Se empareja 1ª con 2ª, 3ª con 4ª, etc.

Tal y como ha quedado la entrada, creo que también es justo avisar a los lectores de que el reto es encontrar el fallo en los dos primeros argumentos. 

———————————————————

A cuenta del sorteo de la Champions, en el que de un total de 8 equipos tenemos 3 españoles, @edusadeci lanzó la pregunta de qué probabilidad hay de que el sorteo empareje a dos equipos españoles, ya advirtiendo de que no es un problema tan sencillo como parece. Merece la pena echar un vistazo a las respuestas, realmente variadas …

Creo que es un ejemplo más de lo difícil que es la probabilidad, y de que muy pronto aparecen preguntas “sencillas” nada fáciles de contestar.

El aspecto que más me interesa del problema es que es un ejemplo perfecto de la importancia de elegir un buen modelo. Desde luego, la probabilidad se puede calcular directamente contando resultados del sorteo. Pero no es sencillo, y es otro buen ejemplo de lo sutil que es la combinatoria, sobre todo dado lo desentrenados que estamos en ella (su presencia en la educación matemática obligatoria es menos que testimonial).

El modelo que me parece más sencillo para contestar la pregunta original es considerar 4 cestos, y 3 bolas rojas. Si colocamos al azar las 3 bolas en los cestos, ¿cuál es la probabilidad de que caigan en cestos distintos? La clave para darse cuenta de que es el mismo problema es considerar las 8 bolas del sorteo, y ver el sorteo como el procedimiento de extraer bolas, al azar, e irlas colocando de dos en dos en los cestos. Podemos imaginar las bolas de los equipos españoles coloreadas de rojo, y darnos cuenta de que realmente el resto de las bolas ¡no juegan ningún papel! Visto así, queda también claro que se trata de una variante del problema del cumpleaños, donde tenemos 3 personas, que cumplen años en 4 días (con probabilidad uniforme, e independientes, claro) y nos preguntamos por la probabilidad de que sus cumpleaños sean distintos.

Una vez hemos llegado aquí, el resto es probabilidad “sencilla”. Si numeramos las 3 bolas según el orden en que las colocamos en los cestos y consideramos los sucesos

A_i \equiv “la bola i cae en un cesto vacío” (para i=2,3)

vemos que calcular la probabilidad de que no haya eliminatoria entre dos equipos españoles es una pregunta que se puede responder con conocimientos básicos de probabilidad condicionada:

probabilidad-Champions

Actualización: podría decir aquello de “estaba preparado para ver si alguien prestaba atención”, pero en absoluto, mi argumento está mal, sin paliativos. Un fiel seguidor del blog me lo ha hecho ver: el problema del modelo que propongo es que no excluye que haya tres bolas en un cesto, cosa prohibida en el sorteo. Eso sí, la solución que propone el lector (matemático, como yo) creo que tampoco es correcta. Al final, esta entrada va a ser sobre todo una prueba de que, con la probabilidad y la combinatoria, cualquiera puede cometer errores. Y que modelar de forma correcta es complicado, aún en situaciones “sencillas”.

Como ya no me fío de nada he decidido recurrir a la “fuerza bruta”, y contar las formas de colocar 3 bolas rojas en 4 cestos, sin permitir que haya 3 en el mismo. Son 16, y aquí están: 

sorteo-bolas-rojas

De esas 16, sólo en 4 se evita el emparejamiento entre dos equipos españoles. Por tanto, la probabilidad de que haya una eliminatoria española es 3/4. Nada extraño que haya ocurrido … 

Actualización 2nuevo error, otra vez de principiante. Los sucesos de la figura NO son equiprobables. Si pensamos en las permutaciones de 8 elementos, que sí son equiprobables, y vemos el sorteo como emparejar 1 y 2, 3 y 4, etc, los sucesos con 3 bolas en distintos cestos se pueden completar a 8 permutaciones (en el sentido de contar sólo las posiciones de las bolas rojas), mientras que los que tienen dos bolas en un mismo cesto se pueden completar solo a 2. Visto así, el conteo para los sorteos sin emparejamiento español es 32/(32+56) = 4/7, que sí coincide con la solución que proponía Roberto Muñoz, el lector que me hizo ver mi primer error. 

Lo dicho, la probabilidad es resbaladiza, y si algún lector tiene un futbolín y cree que debo pasar por debajo de él, estoy dispuesto. 

¿Por qué recurren al móvil para calcular el doble de 16?

Justo antes de navidades vi un par de tuits de @unmatematico que decían

Alumnos de ingeniería que usan la calculadora para operaciones del tipo “32 – 24”, “-3-2+1” [sic] y cosas similares

Acabo de ver dos más muy buenas “2x2x4” y “9-16”. Realmente tenemos un problema …

Creo que muchos hemos visto cosas similares. En mi caso, la última que recuerdo es la que da título a esta entrada. Contesté al tuit, preguntando por las posibles causas, y @druizaguilera contestó con esta lista:

  1. prohibición en primaria + uso indiscriminado en secundaria (y sin instrucciones)
  2. poco trabajo del cálculo mental
  3. pocas (nulas) estrategias personales de cálculo
  4. pereza

Contesté diciendo que estoy esencialmente de acuerdo (algo se podría matizar, porque obviamente 3 es consecuencia directa de 2), pero que me falta una, y es el exceso de cálculo tradicional, sobre todo en primaria. A esto @unmatematico contestó diciendo que no veía claro el mecanismo por el cual el exceso de cálculo en primaria podría llevar a usar la calculadora para operaciones como las mencionadas en la universidad, y me comprometí a exponer mis reflexiones, con el espacio adecuado, en una entrada del blog. Aquí está.

Es verdad que no es imposible trabajar tanto los algoritmos tradicionales como las estrategias de cálculo mental. De hecho, esto es lo que se debería hacer, porque es lo que figura en nuestro currículo de primaria (junto con la iniciación en el uso de la calculadora, y el decidir qué método usar en cada caso). Pero no es sencillo, porque las estrategias para el cálculo mental son distintas (a veces, casi contrapuestas) a las rutinas que se adquieren con los algoritmos tradicionales. De hecho, la principal dificultad que se encuentran mis alumnos para avanzar en el cálculo mental es que tratan de imitar mentalmente lo ya conocido para el papel. También se puede uno encontrar el caso contrario: el niño que ha desarrollado estrategias personales para el cálculo de sumas y que, al empezar en el cole con el algoritmo en columna pierde la comprensión del proceso de suma que había desarrollado.

Me parece que el problema tiene difícil solución mientras sigamos empeñados en que los niños aprendan a hacer divisiones con divisores de tres cifras, como la del ejemplo, sacada de un libro de 5º para la LOMCE y de un problema “realista”: una panadería hace 15408 barras de pan, y pone 237 en cada cesta. ¿Cuántas cestas necesita?

barras-pan

Nota final: encima, seguimos empeñados en comprimir la escritura de la división, en lugar de escribir ese 237 \times 5 que figura en la ayuda. Creo que estamos bastante solos en el mundo a la hora de comprimir así la división. Desde luego, no se hace en los países anglosajones. ¿Algún lector de habla hispana nos comenta cómo se escriben estas divisiones en su país?

Segunda nota final: la entrada me ha quedado menos convincente de lo que la imaginaba antes de empezar. Es un tema que daría para estudios y trabajos de aula.