La probabilidad de las causas

Me parece una expresión muy adecuada para presentar la idea detrás del Teorema de Bayes: si un cierto test médico ha dado positivo, hay dos posibles causas, que la persona esté enferma, o que se trate de un falso positivo. ¿Cómo de probable es cada una de ellas? Esa es justamente la pregunta que contesta la conocida fórmula:

Bayes

Seguro que la mayoría de los lectores la conocen, es el resultado final del tema estándar de probabilidad elemental, y parte del temario de las matemáticas de bachillerato. Pero si algún lector no la conoce, que siga leyendo, por favor. Parte de esta entrada estará dedicada al significado de la fórmula de Bayes.

Pero antes, quería dedicarle un párrafo al libro en el que he descubierto la expresión “La probabilidad de las causas” para presentar la fórmula de Bayes. Es un texto escrito por dos compañeros de mi departamento. Aunque está pensado para un curso de Estadística de 1º de un Grado en el área de Ciencias/Ciencias de la Salud, creo que puede ser útil en Bachillerato, y en general para cualquiera que quiera entender las ideas de fondo de la Estadística. Porque lo que me ha resultado más atractivo del libro es su empeño (casi siempre coronado por el éxito) en transmitir las ideas de fondo tras las técnicas básicas de la Estadística. Es posible que me haya resultado tan interesante precisamente porque ha permitido que entienda algunas de las cosas que siempre me habían resultado escurridizas. El libro está accesible online y además está acompañado de una parte práctica que incluye una introducción a R.

Veamos ahora un ejemplo estándar de aplicación del Teorema de Bayes a un test de diagnóstico. Supongamos que cierta enfermedad afecta al 0,5 % de la población, y que tenemos una prueba para detectarla. Ninguna prueba es completamente fiable, y hay dos tipos de errores. Los falsos positivos son los casos en los que la prueba da positivo aunque la persona no está enferma, y los falsos negativos son los casos en los que la prueba da negativa aunque la persona está enferma. Es fácil imaginar que en la práctica existe una relación entre estos dos tipos de errores, y que para hacer muy pequeña la cantidad de falsos negativos necesitaremos pruebas muy sensibles, que tendrán, en general, una tasa mayor de falsos positivos. Compensar adecuadamente estos dos parámetros es uno de los problemas centrales del diseño de pruebas médicas, ya que el equilibrio deseable varía en cada situación. En nuestro ejemplo, y para simplificar, supondremos que no hay falsos negativos, y que los falsos positivos son el 5 %.

Supongamos ahora que elegimos una persona al azar, le hacemos la prueba y el resultado es positivo. ¿Qué probabilidad hay de que esté enferma? Si llamamos E al suceso “persona enferma”,  y + al suceso “resultado de la prueba positivo”, en el lenguaje de la probabilidad condicionada la probabilidad que queremos calcular es P(E|+)Según la fórmula de Bayes,

enfermo-Bayes

Es decir, en términos de porcentajes, la probabilidad de que la persona esté enferma es aproximadamente el 9,09 %. No despreciable, desde luego. El resultado positivo de la prueba la ha multiplicado casi por 20, pero seguramente es más baja de lo que los lectores sin experiencia en este tema esperaban.

Creo que la forma más sencilla de entender este resultado (y de entender la fórmula de Bayes), es pensarlo en términos de fracciones. El rectángulo de la figura representa el total de la población, el rectángulo rojo de la esquina superior izquierda las personas enfermas, y el rectángulo rojo de la esquina inferior derecha los falsos positivos. El modelo está hecho a escala, de forma que las áreas relativas representan las probabilidades. En este modelo, la pregunta anterior – el resultado de la prueba en una persona elegida al azar es positivo, ¿cuál es la probabilidad de que esté enferma? – se convierte en: elegimos un punto rojo al azar (un resultado positivo). ¿Cuál es la probabilidad de que sea un punto de la esquina superior izquierda? Como el área total de los puntos rojos (como fracción del total) es 0,005 + 0,05 y el área de la esquina superior izquierda es 0,005, vemos que la probabilidad es, en efecto, 0,0909.

Bayes-ej

Anuncios

El sorteo de la Champions y los modelos matemáticos

Actualización 3: un lector pregunta por los detalles del sorteo. Creo que lo razonable es aclarar eso al principio. Se trata de un sorteo puro, cualquier combinación es igualmente probable. Los detalles de cómo se lleva a cabo el sorteo “real” son irrelevantes, eso es parte del tema de “elegir bien el modelo”, sobre el que quería escribir en esta entrada. En todo caso, simplemente hay 8 bolas en un bombo, y se van extrayendo una a una. Se empareja 1ª con 2ª, 3ª con 4ª, etc.

Tal y como ha quedado la entrada, creo que también es justo avisar a los lectores de que el reto es encontrar el fallo en los dos primeros argumentos. 

———————————————————

A cuenta del sorteo de la Champions, en el que de un total de 8 equipos tenemos 3 españoles, @edusadeci lanzó la pregunta de qué probabilidad hay de que el sorteo empareje a dos equipos españoles, ya advirtiendo de que no es un problema tan sencillo como parece. Merece la pena echar un vistazo a las respuestas, realmente variadas …

Creo que es un ejemplo más de lo difícil que es la probabilidad, y de que muy pronto aparecen preguntas “sencillas” nada fáciles de contestar.

El aspecto que más me interesa del problema es que es un ejemplo perfecto de la importancia de elegir un buen modelo. Desde luego, la probabilidad se puede calcular directamente contando resultados del sorteo. Pero no es sencillo, y es otro buen ejemplo de lo sutil que es la combinatoria, sobre todo dado lo desentrenados que estamos en ella (su presencia en la educación matemática obligatoria es menos que testimonial).

El modelo que me parece más sencillo para contestar la pregunta original es considerar 4 cestos, y 3 bolas rojas. Si colocamos al azar las 3 bolas en los cestos, ¿cuál es la probabilidad de que caigan en cestos distintos? La clave para darse cuenta de que es el mismo problema es considerar las 8 bolas del sorteo, y ver el sorteo como el procedimiento de extraer bolas, al azar, e irlas colocando de dos en dos en los cestos. Podemos imaginar las bolas de los equipos españoles coloreadas de rojo, y darnos cuenta de que realmente el resto de las bolas ¡no juegan ningún papel! Visto así, queda también claro que se trata de una variante del problema del cumpleaños, donde tenemos 3 personas, que cumplen años en 4 días (con probabilidad uniforme, e independientes, claro) y nos preguntamos por la probabilidad de que sus cumpleaños sean distintos.

Una vez hemos llegado aquí, el resto es probabilidad “sencilla”. Si numeramos las 3 bolas según el orden en que las colocamos en los cestos y consideramos los sucesos

A_i \equiv “la bola i cae en un cesto vacío” (para i=2,3)

vemos que calcular la probabilidad de que no haya eliminatoria entre dos equipos españoles es una pregunta que se puede responder con conocimientos básicos de probabilidad condicionada:

probabilidad-Champions

Actualización: podría decir aquello de “estaba preparado para ver si alguien prestaba atención”, pero en absoluto, mi argumento está mal, sin paliativos. Un fiel seguidor del blog me lo ha hecho ver: el problema del modelo que propongo es que no excluye que haya tres bolas en un cesto, cosa prohibida en el sorteo. Eso sí, la solución que propone el lector (matemático, como yo) creo que tampoco es correcta. Al final, esta entrada va a ser sobre todo una prueba de que, con la probabilidad y la combinatoria, cualquiera puede cometer errores. Y que modelar de forma correcta es complicado, aún en situaciones “sencillas”.

Como ya no me fío de nada he decidido recurrir a la “fuerza bruta”, y contar las formas de colocar 3 bolas rojas en 4 cestos, sin permitir que haya 3 en el mismo. Son 16, y aquí están: 

sorteo-bolas-rojas

De esas 16, sólo en 4 se evita el emparejamiento entre dos equipos españoles. Por tanto, la probabilidad de que haya una eliminatoria española es 3/4. Nada extraño que haya ocurrido … 

Actualización 2nuevo error, otra vez de principiante. Los sucesos de la figura NO son equiprobables. Si pensamos en las permutaciones de 8 elementos, que sí son equiprobables, y vemos el sorteo como emparejar 1 y 2, 3 y 4, etc, los sucesos con 3 bolas en distintos cestos se pueden completar a 8 permutaciones (en el sentido de contar sólo las posiciones de las bolas rojas), mientras que los que tienen dos bolas en un mismo cesto se pueden completar solo a 2. Visto así, el conteo para los sorteos sin emparejamiento español es 32/(32+56) = 4/7, que sí coincide con la solución que proponía Roberto Muñoz, el lector que me hizo ver mi primer error. 

Lo dicho, la probabilidad es resbaladiza, y si algún lector tiene un futbolín y cree que debo pasar por debajo de él, estoy dispuesto. 

¿Por qué recurren al móvil para calcular el doble de 16?

Justo antes de navidades vi un par de tuits de @unmatematico que decían

Alumnos de ingeniería que usan la calculadora para operaciones del tipo “32 – 24”, “-3-2+1” [sic] y cosas similares

Acabo de ver dos más muy buenas “2x2x4” y “9-16”. Realmente tenemos un problema …

Creo que muchos hemos visto cosas similares. En mi caso, la última que recuerdo es la que da título a esta entrada. Contesté al tuit, preguntando por las posibles causas, y @druizaguilera contestó con esta lista:

  1. prohibición en primaria + uso indiscriminado en secundaria (y sin instrucciones)
  2. poco trabajo del cálculo mental
  3. pocas (nulas) estrategias personales de cálculo
  4. pereza

Contesté diciendo que estoy esencialmente de acuerdo (algo se podría matizar, porque obviamente 3 es consecuencia directa de 2), pero que me falta una, y es el exceso de cálculo tradicional, sobre todo en primaria. A esto @unmatematico contestó diciendo que no veía claro el mecanismo por el cual el exceso de cálculo en primaria podría llevar a usar la calculadora para operaciones como las mencionadas en la universidad, y me comprometí a exponer mis reflexiones, con el espacio adecuado, en una entrada del blog. Aquí está.

Es verdad que no es imposible trabajar tanto los algoritmos tradicionales como las estrategias de cálculo mental. De hecho, esto es lo que se debería hacer, porque es lo que figura en nuestro currículo de primaria (junto con la iniciación en el uso de la calculadora, y el decidir qué método usar en cada caso). Pero no es sencillo, porque las estrategias para el cálculo mental son distintas (a veces, casi contrapuestas) a las rutinas que se adquieren con los algoritmos tradicionales. De hecho, la principal dificultad que se encuentran mis alumnos para avanzar en el cálculo mental es que tratan de imitar mentalmente lo ya conocido para el papel. También se puede uno encontrar el caso contrario: el niño que ha desarrollado estrategias personales para el cálculo de sumas y que, al empezar en el cole con el algoritmo en columna pierde la comprensión del proceso de suma que había desarrollado.

Me parece que el problema tiene difícil solución mientras sigamos empeñados en que los niños aprendan a hacer divisiones con divisores de tres cifras, como la del ejemplo, sacada de un libro de 5º para la LOMCE y de un problema “realista”: una panadería hace 15408 barras de pan, y pone 237 en cada cesta. ¿Cuántas cestas necesita?

barras-pan

Nota final: encima, seguimos empeñados en comprimir la escritura de la división, en lugar de escribir ese 237 \times 5 que figura en la ayuda. Creo que estamos bastante solos en el mundo a la hora de comprimir así la división. Desde luego, no se hace en los países anglosajones. ¿Algún lector de habla hispana nos comenta cómo se escriben estas divisiones en su país?

Segunda nota final: la entrada me ha quedado menos convincente de lo que la imaginaba antes de empezar. Es un tema que daría para estudios y trabajos de aula.

Cálculo de primitivas (II)

A raíz de la entrada de ayer intercambié con @lolamenting una serie de mensajes que me han tenido pensando un rato. La conversación acabó con esta pregunta suya,

¿en 2° Bach Ciencias debemos ceñirnos a los contenidos de la PAU o preparar para una ingeniería?

a la que solo contesté que la respuesta requería un post. Aquí está.

Mi primera tentación fue responder que las dos cosas son, obviamente, lo mismo, pero luego me quedé pensando hasta qué punto eso es verdad y, sobre todo, por qué no está claro que sean lo mismo (porque sigo pensando que las dos cosas son, al menos muy aproximadamente, equivalentes). Henos aquí, una vez mas, ante un grave problema de comunicación entre niveles educativos, en este caso entre bachillerato y universidad.

Esta falta de comunicación es en sí mismo un gran problema, y creo que una de las causas principales es la poca claridad de nuestra legislación curricular. En la figura siguiente se puede ver lo que dice el currículo de la LOMCE sobre el cálculo de primitivas. Veremos qué dicen los currículos autonómicos, aunque me sorprendería que fuera diferente. Compararlo con la segunda parte de la figura, en la que muestro lo que dice al respecto el currículo de las “H2 Mathematics” de Singapur (el resaltado en “given” es mío): curriculos-integralesLas matemáticas H2 son las que me parecen mas equiparables a nuestras Matemáticas II, y de verdad que recomiendo un vistazo a su currículo. Creo que cualquier profesor que tiene que impartir ese currículo ve bastante claro qué tiene que hacer, y cualquier profesor que tiene enfrente a alumnos que han superado con éxito la asignatura correspondiente se hace una idea bastante clara de qué puede esperar de ellos.

Por contra, nuestra legislación curricular rebosa de logomaquia competencial (ojo: no estoy criticando el fondo de las competencias, sino la verborrea competencial que inunda nuestros decretos educativos) y descuida los detalles mas técnicos, pero imprescindibles para que el currículo sea eso, un currículo.

En este aspecto particular en la universidad no estamos mucho mejor, desde la reforma que trajo los planes de estudio de los grados, conocida como “planes de  Bolonia”. Sobre lo que ha pasado en la universidad, recomiendo este artículo de Pello Salaburu, ex-rector de la Universidad del País Vasco. Es de octubre de 2011, pero no ha perdido un ápice de actualidad.

Volviendo a la pregunta original, lo que realmente tenemos que contestar es: ¿dónde empieza el estudio de la integración en 1º de Ingeniería? ¿Qué se da por ya sabido? No es una pregunta fácil de contestar. He echado un vistazo a algunas escuelas de ingeniería, pero la proliferación de aulas virtuales y demás espacios cerrados de aprendizaje ha hecho que los materiales de las asignaturas no sean accesibles desde el exterior, así que lo que voy a decir está basado simplemente en la información sobre lugares que conozco. Si algún lector tiene mas información, sería estupendo que la compartiera.

Mi impresión es que lo que necesita un alumno sobre integrales para abordar una ingeniería es saber unas pocas cosas muy básicas, pero tenerlas bien claras. Y por cosas muy básicas me refiero a saber que la integral es lineal, que la integral del producto no es el producto de las integrales, integrales básicas como \int e^{3x} \, dx y $\int x \cos x^2\, dx$, y ejemplos sencillos de integración por partes como $\int x e^{2x} \, dx$.

Y el problema mas extendido es que, al ver en 2º de Bachillerato bastante mas de lo que el tiempo disponible aconsejaría, el aprendizaje que se produce es superficial: los alumnos aplicados hacen las cosas en el examen, claro que sí, y en la PAU, pero llega el verano y en septiembre muchos de ellos tienen que volver a empezar casi desde cero. Vamos, uno de los problemas de fondo de nuestro sistema escolar (también en la universidad): ver mas de lo que los alumnos pueden realmente aprender.

 

Cálculo de primitivas en la PAU

Mirando los libros de 2º de Bachillerato veo integrales como las que yo proponía hace ya unos cuantos años en 1º de Ingeniería de Telecomunicación. Y he visto también listados de problemas de PAU que ganarían mucho si en cada problema figurara la fecha en la que se planteó. Por si sirve de ayuda, y para intentar evitar ese “vamos a hacer estas integrales, que las preguntan en la PAU”, aquí están las integrales que han aparecido en la PAU de Madrid, desde el año 2010 hasta el  2014.

  • Junio 2010, opción B.
    Calcular el área de la región limitada por las funciones y = 9-x^2 e y=2x+1
  • Septiembre 2010, opción A.
    a) \int_{14}^{16} (x-15)^8 \,dx.  b) \int_9^{11} (x-10)^{19} (x-9)\,dx
  • Junio 2011, opción A.
    \int_{1}^{3} x \sqrt{4+5x^2} \,dx.
  • Septiembre 2011, opción A.
    \int_{0}^{1} \frac{x}{1+3x^2}\,dx.
  • Junio 2012, opción A.
    a) \int_0^{\pi} e^{2x}\cos x \,dx.  b) \int_0^{\pi/2} \frac{\sin 2x}{1+ \cos^2 2x}.
  • Septiembre 2012, opción B.
    Calcular \int_{0}^{\pi} x^2 \sin x \,dx.
  • Junio 2013, opción A.
    a) \int \frac{x-3}{x^2+9}\,dx.  b) \int_1^2 \frac{3-x^2+x^4}{x^3}\,dx.
  • Septiembre 2013, opción B.
    \int_0^{\pi/2} 2 \cos^2 x \,dx.
  • Junio 2014, opción A.
    Área de la región acotada limitada por el eje OX y la función x^4 + 4 x^3.
  • Septiembre 2014, opción A.
    \int_0^1 \bigl( \frac{1}{x+1} + \frac{x}{x+4}\bigr) \,dx.
  • Septiembre 2014, opción B.
    \int_1^{\ln 5} (x e^x + 3)\,dx

A vueltas con la formación matemática de los maestros

La verdad es que no pensaba volver a escribir sobre el tema, sencillamente porque creo que está casi todo dicho, y no veo mucha mas opción que seguir trabajando en mi centro particular, empezar a trabajar en formación continua, y ver si los resultados, que me parece que son buenos, se manifiestan de alguna forma en algún momento …

Pero este artículo de la Revista de Educación, dedicado a analizar los conocimientos de aritmética de futuros maestros, me parece que merece algunos comentarios. El artículo es de lectura mas que recomendable para todos los implicados en el tema, y para todo el que quiera saber un poco mas sobre el problema. Las preguntas propuestas creo que están muy bien elegidas para analizar la comprensión de los temas que se analizan (fracciones, decimales y porcentajes). Mi única pega sobre este aspecto es que creo que se debería haber incluido también el tema de razones y proporciones, por coherencia temática. Los resultados no me sorprenden, están en línea con lo que observo cuando pregunto a mis estudiantes al empezar la asignatura de Matemáticas I, la dedicada a la aritmética. En resumen: una buena parte de los estudiantes no entienden conceptos básicos de la aritmética.

Lo que sí me sorprende son las conclusiones del trabajo. Este es el párrafo con el que comienza la “Reflexión final”:

Para finalizar, nos gustaría que este estudio pudiera contribuir a la reflexión de los distintos actores implicados en el sistema educativo con capacidad en la toma de decisiones. En primer lugar,  esto nos debe ayudar a comprender mejor qué y cómo trabajar determinados aspectos relacionados  con  las fracciones, los decimales y los porcentajes en la Educación Primaria. En segundo lugar, las autoridades educativas deberían definir con más precisión los conocimientos matemáticos previos exigibles a un estudiante para Maestro, puesto que la universidad no parece el lugar más adecuado  para volver  sobre  conocimientos que deberían haberse superado con anterioridad.

Empezando por el final, es debatible que incluso un alumno que haya cursado de forma satisfactoria la enseñanza secundaria y haya entendido los conceptos básicos haya alcanzado ya la comprensión conceptual necesaria para un buen desempeño docente, precisamente porque posiblemente deba completar lo que en el artículo acertadamente se define como conocimientos matemáticos para la docencia. Otra cosa es que, desde luego, con los alumnos mejor preparados ese trabajo sea mas fácil, mas rápido y mas satisfactorio. Pero es que la mayoría de los alumnos no están en esa situación. ¿Por qué la universidad (las facultades de educación) no son un lugar adecuado para revisar esos conocimientos? En didáctica es bien conocido el poder de las preconcepciones, me parece que aquí tenemos un ejemplo clarísimo …

Soy muy escéptico sobre los resultados de la propuesta que parece que se está abriendo camino, y que consiste en elevar el nivel de exigencia en la entrada de los estudios de magisterio. Por supuesto que sería positivo tener mejores estudiantes, pero pretender seleccionar en la entrada para que no sea necesario tratar los contenidos matemáticos me parece inviable. No he podido contrastar la información, y si algún lector puede confirmar o desmentir este hecho se lo agradezco, pero  he oído que la matrícula en los estudios del Grado de Primaria de la Universidad Rey Juan Carlos se redujo en 1/3 cuando aplicó ya este curso el acuerdo de la Comunidad de Madrid de exigir un 5 en la prueba de Lengua de la PAU para el ingreso en el grado. Sobre matemáticas, existe el proyecto de una prueba específica, ya que recurrir a la PAU no es viable.

Por otra parte, es verdad que hay que mejorar el tratamiento de determinados aspectos relacionados  con  las fracciones, los decimales y los porcentajes en la Educación Primaria pero, ¿quién va a llevar esa mejora a las aulas de primaria? ¿Los maestros que no dominan esos contenidos, y a los que parece que no queremos enseñárselos?

Ya mencioné en entradas anteriores mi postura, pero termino esta entrada reiterándola “en aras de la completitud”. Me parece que la propuesta que hizo el National Council on Teacher Quality, que se puede ver en este documento (versión resumida, versión completa) es casi directamente trasladable a nuestro país. La propuesta consiste en incluir cuatro asignaturas de matemáticas en el grado de magisterio: una dedicada a la aritmética, otra dedicada a la geometría, con algo de tratamiento de datos y probabilidad, una tercera dedicada al álgebra y el razonamiento matemático, y una cuarta sobre didáctica de las matemáticas. No conozco datos precisos, pero creo que la media de nuestros planes actuales ronda las tres asignaturas. Eso sí, mi impresión es que la mayoría de esas tres asignaturas están dedicadas a la didáctica de las matemáticas, y se intenta explicar la didáctica de unos contenidos que parece que la mayoría de los estudiantes no dominan lo suficiente.

Estos son los textos mejor valorados en el informe mencionado:

  • Parker, Balridge. Elementary mathematics for teachers. / Elementary geometry for teachers. Sefton-Ash Publishing, EEUU, 2004.
  • Musser, Burger, Peterson. Mathematics for Elementary Teachers: a contemporary approach. Ed. Wiley. 2010.
  • Sybilla Beckmann. Mathematics for Elementary Teachers with Activities. Pearson, 2014.

Técnicas versus conceptos

La conferencia de clausura de la jornada sobre innovación que mencioné en la entrada anterior fue impartida por Michèle Artigue. No la conocía (soy un recién llegado al campo de la educación matemática) pero se trata sin duda de una primera figura a nivel internacional. Recientemente ha recibido nada menos que el premio Felix Klein en el año 2013 y la medalla Luis Santaló en el año 2014, dos de las distinciones mas importantes en el área.

La primera parte de su conferencia la dedicó a presentar unos materiales sobre los que estaban trabajando. Me parecieron interesantes. La idea era modelar con Geogebra problemas de persecución. Ahora no encuentro una referencia, pero cuando la consiga volveré a hablar sobre este tema.

Después su conferencia se deslizó hacia aspectos mas abstractos de la didáctica. Antes de seguir, una aclaración preventiva: no pretendo cuestionar el interés de esta didáctica mas abstracta. Lo único que digo es que demasiadas veces peca de excesivamente académica, y alejada de la realidad de las aulas y que, por tanto, puede no resultar del todo accesible e interesante para el profesor de a pie. Este problema no es, desde luego, exclusivo de la didáctica. De hecho, creo que los matemáticos caemos en este error con bastante frecuencia. Para dar un ejemplo en el que he caído personalmente, empeñarse en hablar de epsilones y deltas – o del Teorema de Bolzano – a futuros ingenieros. Y también ocurre en otras áreas alejadas de las matemáticas. La mas prominente me parece el bombardeo de análisis sintáctico y morfológico en los estudios de Lengua de nuestra secundaria.

Total: que en esos aspectos abstractos de la didáctica me perdí completamente, y estuve distraído unos minutos hasta que escuché una expresión ya oída, la teoría antropológica de lo didáctico. Ya me había topado con la etiqueta en alguno texto, sin llegar a entender casi nada, así que intenté concentrarme de nuevo en la conferencia, para ver si conseguía sacar alguna idea en claro. Nuevo fracaso: la jerga me resulta incomprensible. Si algún lector sabe algo del tema, y puede expicar en qué consiste en lenguaje accesible a profanos, le estaré sinceramente agradecido.

De manera que nuevos minutos de distracción, hasta que escuché una frase, pronunciada con total convicción. que captó de nuevo mi atención. Creo que, textualmente (habla un castellano bastante correcto), Artigue dijo: “Pensar que, gracias a las TIC, podemos prescindir de las técnicas y centrarnos en el estudio de los conceptos es un profundo error”. Es una frase que suscribo completamente, pero se trata solo de la entrada al problema, claro. Es una pena que no hubiera tiempo para profundizar en el tema (era ya el final de la conferencia, no hubo turno de preguntas, y la reunión terminaba justo entonces) porque me parece una de las grandes cuestiones de la educación matemática en nuestros días.

Desde mi punto de vista, la clave es que existe una fuerte relación entre algunas técnicas y los conceptos. Dicho de otra forma: para comprender de forma adecuada ciertos conceptos es importante adquirir cierta soltura técnica. Ahora bien, creo que es crucial entrar en el detalle. Por poner un ejemplo sencillo: estoy de acuerdo en que hacer divisiones es importante para comprender los problemas de reparto y, en general, para adquirir sentido numérico. Ahora bien, si el valor fundamental del cálculo de divisiones es éste, es muy posible que tengamos que revisar cómo hacer las divisiones, y qué divisiones hacer. Por una razón muy sencilla: el algoritmo tradicional de la división se diseñó con un objetivo muy distinto, que no es otro que poder hacer divisiones exactas con enteros grandes. Si este objetivo ha quedado obsoleto (personalmente, creo que sí), es muy posible que el algoritmo tradicional haya quedado también obsoleto. Revisar los currículos con esta idea en la cabeza puede ser una tarea apasionante. Si hubiera que hacer un concurso sobre el algoritmo mas caduco, por superfluo a la hora de ayudar a la comprensión conceptual, mi voto creo que sería para la Regla de Ruffini. ¿Y el suyo?