¿Por qué recurren al móvil para calcular el doble de 16?

Justo antes de navidades vi un par de tuits de @unmatematico que decían

Alumnos de ingeniería que usan la calculadora para operaciones del tipo “32 – 24”, “-3-2+1” [sic] y cosas similares

Acabo de ver dos más muy buenas “2x2x4” y “9-16”. Realmente tenemos un problema …

Creo que muchos hemos visto cosas similares. En mi caso, la última que recuerdo es la que da título a esta entrada. Contesté al tuit, preguntando por las posibles causas, y @druizaguilera contestó con esta lista:

  1. prohibición en primaria + uso indiscriminado en secundaria (y sin instrucciones)
  2. poco trabajo del cálculo mental
  3. pocas (nulas) estrategias personales de cálculo
  4. pereza

Contesté diciendo que estoy esencialmente de acuerdo (algo se podría matizar, porque obviamente 3 es consecuencia directa de 2), pero que me falta una, y es el exceso de cálculo tradicional, sobre todo en primaria. A esto @unmatematico contestó diciendo que no veía claro el mecanismo por el cual el exceso de cálculo en primaria podría llevar a usar la calculadora para operaciones como las mencionadas en la universidad, y me comprometí a exponer mis reflexiones, con el espacio adecuado, en una entrada del blog. Aquí está.

Es verdad que no es imposible trabajar tanto los algoritmos tradicionales como las estrategias de cálculo mental. De hecho, esto es lo que se debería hacer, porque es lo que figura en nuestro currículo de primaria (junto con la iniciación en el uso de la calculadora, y el decidir qué método usar en cada caso). Pero no es sencillo, porque las estrategias para el cálculo mental son distintas (a veces, casi contrapuestas) a las rutinas que se adquieren con los algoritmos tradicionales. De hecho, la principal dificultad que se encuentran mis alumnos para avanzar en el cálculo mental es que tratan de imitar mentalmente lo ya conocido para el papel. También se puede uno encontrar el caso contrario: el niño que ha desarrollado estrategias personales para el cálculo de sumas y que, al empezar en el cole con el algoritmo en columna pierde la comprensión del proceso de suma que había desarrollado.

Me parece que el problema tiene difícil solución mientras sigamos empeñados en que los niños aprendan a hacer divisiones con divisores de tres cifras, como la del ejemplo, sacada de un libro de 5º para la LOMCE y de un problema “realista”: una panadería hace 15408 barras de pan, y pone 237 en cada cesta. ¿Cuántas cestas necesita?

barras-pan

Nota final: encima, seguimos empeñados en comprimir la escritura de la división, en lugar de escribir ese 237 \times 5 que figura en la ayuda. Creo que estamos bastante solos en el mundo a la hora de comprimir así la división. Desde luego, no se hace en los países anglosajones. ¿Algún lector de habla hispana nos comenta cómo se escriben estas divisiones en su país?

Segunda nota final: la entrada me ha quedado menos convincente de lo que la imaginaba antes de empezar. Es un tema que daría para estudios y trabajos de aula.

Cálculo de primitivas (II)

A raíz de la entrada de ayer intercambié con @lolamenting una serie de mensajes que me han tenido pensando un rato. La conversación acabó con esta pregunta suya,

¿en 2° Bach Ciencias debemos ceñirnos a los contenidos de la PAU o preparar para una ingeniería?

a la que solo contesté que la respuesta requería un post. Aquí está.

Mi primera tentación fue responder que las dos cosas son, obviamente, lo mismo, pero luego me quedé pensando hasta qué punto eso es verdad y, sobre todo, por qué no está claro que sean lo mismo (porque sigo pensando que las dos cosas son, al menos muy aproximadamente, equivalentes). Henos aquí, una vez mas, ante un grave problema de comunicación entre niveles educativos, en este caso entre bachillerato y universidad.

Esta falta de comunicación es en sí mismo un gran problema, y creo que una de las causas principales es la poca claridad de nuestra legislación curricular. En la figura siguiente se puede ver lo que dice el currículo de la LOMCE sobre el cálculo de primitivas. Veremos qué dicen los currículos autonómicos, aunque me sorprendería que fuera diferente. Compararlo con la segunda parte de la figura, en la que muestro lo que dice al respecto el currículo de las “H2 Mathematics” de Singapur (el resaltado en “given” es mío): curriculos-integralesLas matemáticas H2 son las que me parecen mas equiparables a nuestras Matemáticas II, y de verdad que recomiendo un vistazo a su currículo. Creo que cualquier profesor que tiene que impartir ese currículo ve bastante claro qué tiene que hacer, y cualquier profesor que tiene enfrente a alumnos que han superado con éxito la asignatura correspondiente se hace una idea bastante clara de qué puede esperar de ellos.

Por contra, nuestra legislación curricular rebosa de logomaquia competencial (ojo: no estoy criticando el fondo de las competencias, sino la verborrea competencial que inunda nuestros decretos educativos) y descuida los detalles mas técnicos, pero imprescindibles para que el currículo sea eso, un currículo.

En este aspecto particular en la universidad no estamos mucho mejor, desde la reforma que trajo los planes de estudio de los grados, conocida como “planes de  Bolonia”. Sobre lo que ha pasado en la universidad, recomiendo este artículo de Pello Salaburu, ex-rector de la Universidad del País Vasco. Es de octubre de 2011, pero no ha perdido un ápice de actualidad.

Volviendo a la pregunta original, lo que realmente tenemos que contestar es: ¿dónde empieza el estudio de la integración en 1º de Ingeniería? ¿Qué se da por ya sabido? No es una pregunta fácil de contestar. He echado un vistazo a algunas escuelas de ingeniería, pero la proliferación de aulas virtuales y demás espacios cerrados de aprendizaje ha hecho que los materiales de las asignaturas no sean accesibles desde el exterior, así que lo que voy a decir está basado simplemente en la información sobre lugares que conozco. Si algún lector tiene mas información, sería estupendo que la compartiera.

Mi impresión es que lo que necesita un alumno sobre integrales para abordar una ingeniería es saber unas pocas cosas muy básicas, pero tenerlas bien claras. Y por cosas muy básicas me refiero a saber que la integral es lineal, que la integral del producto no es el producto de las integrales, integrales básicas como \int e^{3x} \, dx y $\int x \cos x^2\, dx$, y ejemplos sencillos de integración por partes como $\int x e^{2x} \, dx$.

Y el problema mas extendido es que, al ver en 2º de Bachillerato bastante mas de lo que el tiempo disponible aconsejaría, el aprendizaje que se produce es superficial: los alumnos aplicados hacen las cosas en el examen, claro que sí, y en la PAU, pero llega el verano y en septiembre muchos de ellos tienen que volver a empezar casi desde cero. Vamos, uno de los problemas de fondo de nuestro sistema escolar (también en la universidad): ver mas de lo que los alumnos pueden realmente aprender.

 

Cálculo de primitivas en la PAU

Mirando los libros de 2º de Bachillerato veo integrales como las que yo proponía hace ya unos cuantos años en 1º de Ingeniería de Telecomunicación. Y he visto también listados de problemas de PAU que ganarían mucho si en cada problema figurara la fecha en la que se planteó. Por si sirve de ayuda, y para intentar evitar ese “vamos a hacer estas integrales, que las preguntan en la PAU”, aquí están las integrales que han aparecido en la PAU de Madrid, desde el año 2010 hasta el  2014.

  • Junio 2010, opción B.
    Calcular el área de la región limitada por las funciones y = 9-x^2 e y=2x+1
  • Septiembre 2010, opción A.
    a) \int_{14}^{16} (x-15)^8 \,dx.  b) \int_9^{11} (x-10)^{19} (x-9)\,dx
  • Junio 2011, opción A.
    \int_{1}^{3} x \sqrt{4+5x^2} \,dx.
  • Septiembre 2011, opción A.
    \int_{0}^{1} \frac{x}{1+3x^2}\,dx.
  • Junio 2012, opción A.
    a) \int_0^{\pi} e^{2x}\cos x \,dx.  b) \int_0^{\pi/2} \frac{\sin 2x}{1+ \cos^2 2x}.
  • Septiembre 2012, opción B.
    Calcular \int_{0}^{\pi} x^2 \sin x \,dx.
  • Junio 2013, opción A.
    a) \int \frac{x-3}{x^2+9}\,dx.  b) \int_1^2 \frac{3-x^2+x^4}{x^3}\,dx.
  • Septiembre 2013, opción B.
    \int_0^{\pi/2} 2 \cos^2 x \,dx.
  • Junio 2014, opción A.
    Área de la región acotada limitada por el eje OX y la función x^4 + 4 x^3.
  • Septiembre 2014, opción A.
    \int_0^1 \bigl( \frac{1}{x+1} + \frac{x}{x+4}\bigr) \,dx.
  • Septiembre 2014, opción B.
    \int_1^{\ln 5} (x e^x + 3)\,dx

A vueltas con la formación matemática de los maestros

La verdad es que no pensaba volver a escribir sobre el tema, sencillamente porque creo que está casi todo dicho, y no veo mucha mas opción que seguir trabajando en mi centro particular, empezar a trabajar en formación continua, y ver si los resultados, que me parece que son buenos, se manifiestan de alguna forma en algún momento …

Pero este artículo de la Revista de Educación, dedicado a analizar los conocimientos de aritmética de futuros maestros, me parece que merece algunos comentarios. El artículo es de lectura mas que recomendable para todos los implicados en el tema, y para todo el que quiera saber un poco mas sobre el problema. Las preguntas propuestas creo que están muy bien elegidas para analizar la comprensión de los temas que se analizan (fracciones, decimales y porcentajes). Mi única pega sobre este aspecto es que creo que se debería haber incluido también el tema de razones y proporciones, por coherencia temática. Los resultados no me sorprenden, están en línea con lo que observo cuando pregunto a mis estudiantes al empezar la asignatura de Matemáticas I, la dedicada a la aritmética. En resumen: una buena parte de los estudiantes no entienden conceptos básicos de la aritmética.

Lo que sí me sorprende son las conclusiones del trabajo. Este es el párrafo con el que comienza la “Reflexión final”:

Para finalizar, nos gustaría que este estudio pudiera contribuir a la reflexión de los distintos actores implicados en el sistema educativo con capacidad en la toma de decisiones. En primer lugar,  esto nos debe ayudar a comprender mejor qué y cómo trabajar determinados aspectos relacionados  con  las fracciones, los decimales y los porcentajes en la Educación Primaria. En segundo lugar, las autoridades educativas deberían definir con más precisión los conocimientos matemáticos previos exigibles a un estudiante para Maestro, puesto que la universidad no parece el lugar más adecuado  para volver  sobre  conocimientos que deberían haberse superado con anterioridad.

Empezando por el final, es debatible que incluso un alumno que haya cursado de forma satisfactoria la enseñanza secundaria y haya entendido los conceptos básicos haya alcanzado ya la comprensión conceptual necesaria para un buen desempeño docente, precisamente porque posiblemente deba completar lo que en el artículo acertadamente se define como conocimientos matemáticos para la docencia. Otra cosa es que, desde luego, con los alumnos mejor preparados ese trabajo sea mas fácil, mas rápido y mas satisfactorio. Pero es que la mayoría de los alumnos no están en esa situación. ¿Por qué la universidad (las facultades de educación) no son un lugar adecuado para revisar esos conocimientos? En didáctica es bien conocido el poder de las preconcepciones, me parece que aquí tenemos un ejemplo clarísimo …

Soy muy escéptico sobre los resultados de la propuesta que parece que se está abriendo camino, y que consiste en elevar el nivel de exigencia en la entrada de los estudios de magisterio. Por supuesto que sería positivo tener mejores estudiantes, pero pretender seleccionar en la entrada para que no sea necesario tratar los contenidos matemáticos me parece inviable. No he podido contrastar la información, y si algún lector puede confirmar o desmentir este hecho se lo agradezco, pero  he oído que la matrícula en los estudios del Grado de Primaria de la Universidad Rey Juan Carlos se redujo en 1/3 cuando aplicó ya este curso el acuerdo de la Comunidad de Madrid de exigir un 5 en la prueba de Lengua de la PAU para el ingreso en el grado. Sobre matemáticas, existe el proyecto de una prueba específica, ya que recurrir a la PAU no es viable.

Por otra parte, es verdad que hay que mejorar el tratamiento de determinados aspectos relacionados  con  las fracciones, los decimales y los porcentajes en la Educación Primaria pero, ¿quién va a llevar esa mejora a las aulas de primaria? ¿Los maestros que no dominan esos contenidos, y a los que parece que no queremos enseñárselos?

Ya mencioné en entradas anteriores mi postura, pero termino esta entrada reiterándola “en aras de la completitud”. Me parece que la propuesta que hizo el National Council on Teacher Quality, que se puede ver en este documento (versión resumida, versión completa) es casi directamente trasladable a nuestro país. La propuesta consiste en incluir cuatro asignaturas de matemáticas en el grado de magisterio: una dedicada a la aritmética, otra dedicada a la geometría, con algo de tratamiento de datos y probabilidad, una tercera dedicada al álgebra y el razonamiento matemático, y una cuarta sobre didáctica de las matemáticas. No conozco datos precisos, pero creo que la media de nuestros planes actuales ronda las tres asignaturas. Eso sí, mi impresión es que la mayoría de esas tres asignaturas están dedicadas a la didáctica de las matemáticas, y se intenta explicar la didáctica de unos contenidos que parece que la mayoría de los estudiantes no dominan lo suficiente.

Estos son los textos mejor valorados en el informe mencionado:

  • Parker, Balridge. Elementary mathematics for teachers. / Elementary geometry for teachers. Sefton-Ash Publishing, EEUU, 2004.
  • Musser, Burger, Peterson. Mathematics for Elementary Teachers: a contemporary approach. Ed. Wiley. 2010.
  • Sybilla Beckmann. Mathematics for Elementary Teachers with Activities. Pearson, 2014.

Técnicas versus conceptos

La conferencia de clausura de la jornada sobre innovación que mencioné en la entrada anterior fue impartida por Michèle Artigue. No la conocía (soy un recién llegado al campo de la educación matemática) pero se trata sin duda de una primera figura a nivel internacional. Recientemente ha recibido nada menos que el premio Felix Klein en el año 2013 y la medalla Luis Santaló en el año 2014, dos de las distinciones mas importantes en el área.

La primera parte de su conferencia la dedicó a presentar unos materiales sobre los que estaban trabajando. Me parecieron interesantes. La idea era modelar con Geogebra problemas de persecución. Ahora no encuentro una referencia, pero cuando la consiga volveré a hablar sobre este tema.

Después su conferencia se deslizó hacia aspectos mas abstractos de la didáctica. Antes de seguir, una aclaración preventiva: no pretendo cuestionar el interés de esta didáctica mas abstracta. Lo único que digo es que demasiadas veces peca de excesivamente académica, y alejada de la realidad de las aulas y que, por tanto, puede no resultar del todo accesible e interesante para el profesor de a pie. Este problema no es, desde luego, exclusivo de la didáctica. De hecho, creo que los matemáticos caemos en este error con bastante frecuencia. Para dar un ejemplo en el que he caído personalmente, empeñarse en hablar de epsilones y deltas – o del Teorema de Bolzano – a futuros ingenieros. Y también ocurre en otras áreas alejadas de las matemáticas. La mas prominente me parece el bombardeo de análisis sintáctico y morfológico en los estudios de Lengua de nuestra secundaria.

Total: que en esos aspectos abstractos de la didáctica me perdí completamente, y estuve distraído unos minutos hasta que escuché una expresión ya oída, la teoría antropológica de lo didáctico. Ya me había topado con la etiqueta en alguno texto, sin llegar a entender casi nada, así que intenté concentrarme de nuevo en la conferencia, para ver si conseguía sacar alguna idea en claro. Nuevo fracaso: la jerga me resulta incomprensible. Si algún lector sabe algo del tema, y puede expicar en qué consiste en lenguaje accesible a profanos, le estaré sinceramente agradecido.

De manera que nuevos minutos de distracción, hasta que escuché una frase, pronunciada con total convicción. que captó de nuevo mi atención. Creo que, textualmente (habla un castellano bastante correcto), Artigue dijo: “Pensar que, gracias a las TIC, podemos prescindir de las técnicas y centrarnos en el estudio de los conceptos es un profundo error”. Es una frase que suscribo completamente, pero se trata solo de la entrada al problema, claro. Es una pena que no hubiera tiempo para profundizar en el tema (era ya el final de la conferencia, no hubo turno de preguntas, y la reunión terminaba justo entonces) porque me parece una de las grandes cuestiones de la educación matemática en nuestros días.

Desde mi punto de vista, la clave es que existe una fuerte relación entre algunas técnicas y los conceptos. Dicho de otra forma: para comprender de forma adecuada ciertos conceptos es importante adquirir cierta soltura técnica. Ahora bien, creo que es crucial entrar en el detalle. Por poner un ejemplo sencillo: estoy de acuerdo en que hacer divisiones es importante para comprender los problemas de reparto y, en general, para adquirir sentido numérico. Ahora bien, si el valor fundamental del cálculo de divisiones es éste, es muy posible que tengamos que revisar cómo hacer las divisiones, y qué divisiones hacer. Por una razón muy sencilla: el algoritmo tradicional de la división se diseñó con un objetivo muy distinto, que no es otro que poder hacer divisiones exactas con enteros grandes. Si este objetivo ha quedado obsoleto (personalmente, creo que sí), es muy posible que el algoritmo tradicional haya quedado también obsoleto. Revisar los currículos con esta idea en la cabeza puede ser una tarea apasionante. Si hubiera que hacer un concurso sobre el algoritmo mas caduco, por superfluo a la hora de ayudar a la comprensión conceptual, mi voto creo que sería para la Regla de Ruffini. ¿Y el suyo?

 

La formación matemática de los maestros

Hoy el Instituto Nacional de Evaluación Educativa publica esta entrada sobre la formación matemática de los maestros. Supongo que la culpa es mía, por haberme extendido demasiado, pero han recortado la versión original que les envié, sin prevenirme. No han cambiado nada relevante; todas las ideas importantes están ahí, pero la sintaxis ha sufrido algo … Para no llevarme mas collejas de las que me merezco, aquí está la versión completa.

PAU en Madrid, junio de 2014. ¿Algo se mueve?

Tras las últimas entradas sobre las derivadas y la PAU, me parece natural hacer algún comentario sobre el examen de hoy en Madrid (si algún lector me envía exámenes de otras comunidades, estaré encantado de enlazarlos aquí). Me ha parecido un paso (quizá pequeño, pero seguramente lo más que se podía esperar) en la buena dirección. No hay grandes cálculos, y la comprensión conceptual tiene más peso que otras veces (o eso me parece). Quizá me equivoque, pero me ha parecido que a los alumnos no les parecía sencillo (nada sorprendente, seguramente era distinto de lo que se esperaban, de aquello para lo que habían estando entrenándose – creo que esa es la palabra adecuada, sí). Ahora solo falta que el mensaje cale en todas esas aulas donde se siguen calculando montones de derivadas y primitivas … porque hacen falta para selectividad.

Los libros de texto

Casi invariablemente, cuando surge este tema de conversación alguien pronuncia la frase “Un buen profesor no necesita un libro de texto”. Es difícil discrepar, pero creo que se trata de una salida en falso al problema. Creo que la frase merece dos acotaciones:

  1. Un “buen profesor”. Es verdad que hay profesores y, en general, centros, que están haciendo un trabajo estupendo con una metodología que excluye los libros de texto. Sin embargo, creo que no es realista esperar que esto se convierta en la norma general del sistema escolar. Todos los esfuerzos que se hagan para mejorar la formación del profesorado redundarán en la calidad del sistema, pero inexorablemente el profesor medio será … medio.
  2. “Necesita”: bueno, necesitar puede ser mucho decir, y es verdad que no es razonable que un profesor dependa completamente de un texto, y no tenga iniciativa para prescindir de él de vez en cuando. Los libros de texto son simplemente un recurso (eso sí, desde mi punto de vista el que debería ser más relevante).

En resumen, a “Un buen profesor no necesita un libro de texto” yo contestaría “Un buen libro de texto es un recurso valioso para cualquier profesor (y para todos los alumnos)”.

Lo que me resulta más llamativo es que la frase con la que empezaba esta entrada se suele usar para quitarle importancia al problema de la falta de calidad de los libros de texto. Porque si en algo he encontrado una casi completa unanimidad al hablar de estos temas es que nuestros libros de texto, especialmente de primaria, dejan mucho que desear.

Una petición que he oído con frecuencia para intentar mejorar ese nivel es recuperar la autorización administrativa que era necesaria hasta 1998. La verdad, soy muy escéptico ante la posibilidad de que tal trámite tuviera algún impacto positivo. Richard Feynman, el famoso físico, participó en 1964 en la comisión del Estado de California encargada de elegir los libros de texto de matemáticas que se usarían en los colegios públicos del estado. Mi amigo Sergio Cabello me pasó la referencia de este texto (en inglés) en el que, con su divertido estilo, Feynman plasmó su experiencia como miembro de la comisión. Su lectura me parece recomendable y bastante reveladora.

¿Qué hacer entonces? Cuando hace ya tres años descubrí los libros de primaria de Singapur, que me llamaron la atención enseguida, dediqué cierto tiempo a intentar contactar con editoriales con la idea de hacer algo similar, o directamente de hacer una versión española de los textos. Por cierto, sé que el centro Felix Klein de Didáctica de las Matemáticas, de Chile, está haciendo una adaptación de los textos, pero no la conozco. La verdad es que alguna editorial (de las importantes) tomó la propuesta en consideración, pero la contestación final fue: “no lo vemos aquí, es demasiado distinto”. Conseguí callarme la respuesta que se me habría escapado hace 20 años (¡pues claro que es distinto, es varios órdenes de magnitud mejor!) y me puse a considerar el enfoque posibilista, e intentar una versión que pudiera gustar a una editorial pero con un enfoque suficientemente distinto. Bastaron un par de conversaciones con autores con experiencia en esas lides para quitarme la idea de la cabeza. Decidí dedicar la energía que tendría que haber invertido en la lucha con la posible editorial en empezar a generar el material que quiero presentar hoy. ¿Que dónde acabará? De momento no lo sé, pero la investigación a la que le dedico el resto de mi tiempo de trabajo te prepara para todo. Muchas veces inviertes semanas en trabajar un problema. A veces sale, y a veces no …

El punto de vista con el que he hecho los libros (bueno, de momento medios libros) es pensar en qué me gustaría tener a mi si el próximo septiembre me tocara empezar a dar clase en 1º de primaria. Y lo que me gustaría es tener unas transparencias para proyectar en una pantalla, o en una pizarra digital, y poder presentar imágenes y hablar con los niños sobre ellas. La primera parte está casi lista, a falta de algún dibujo y una posible revisión cuando la comunidad de Madrid apruebe el nuevo currículo (aunque, desde luego, las tablas del 0 y el 1 no aparecerán en este texto!). Es aproximadamente la  mitad del curso: transparencias parte A. Por supuesto, sé que no en todas las aulas hay pizarra digital o pantalla disponible, y he preparado una versión para papel (es en color, pero pensada para poder ser imprimida en blanco y negro, en ningún momento se hace referencia a “ese cuadrado azul”). También hay una guía para el maestro, con algunas indicaciones. Son indicaciones breves, quizá demasiado breves para algunos. Mi impresión general es que este tipo de cosas suelen ser demasiado extensas, y prefiero ser breve para resaltar las ideas fundamentales. Es posible que me haya excedido. Encantado de recibir opiniones de posibles usuarios en el correo masideas.menoscuentas de gmail. De hecho, si algún colegio de los alrededores de Madrid se planteara usar el material, podríamos organizar algún tipo de seminario. Por último, falta mencionar el cuaderno de ejercicios. Me parece muy importante que los niños puedan hacer los ejercicios sin tener que volver a copiar los enunciados, y de forma organizada. Es verdad que la lectoescritura es importante, y que requiere práctica. Pero el tiempo de matemáticas debería estar dedicado … a las matemáticas.

Termino con dos detalles: la versión completa estará lista antes de agosto y, por supuesto, para el curso 2015-2016 habrá libro de 2º …

 

Los datos de la Comunidad de Madrid sobre la PAU

Creo que uno de los grandes problemas de nuestro sistema educativo es la falta de datos fiables, y en general me inclino por que necesitamos más datos en casi todas partes. Pero lo único peor que no dar datos es dar datos que puedan generar incentivos perversos, y eso es lo que puede estar haciendo la Comunidad de Madrid con los datos de los institutos y la PAU (selectividad).

Ya de por sí puede ser cuestionable que los datos se publiquen sin ningún tipo de información sobre las características sociológicas del alumnado, que me parece imprescindible para poder hacerse una idea del valor añadido del centro, pero en el caso de la información sobre la PAU la cosa es bastante peor. Lo que se puede ver sobre un centro es un diagrama como el de la figura, donde se muestran las notas obtenidas en la PAU por los alumnos del centro y las notas medias de la comunidad (o los porcentajes de aprobados, o alguna otra variante).

datos-PAU-MadridNo hace falta ser un experto en gestión educativa para darse cuenta de que estos datos pueden generar incentivos perversos. Si un centro está interesado en mejorar sus resultados, la tentación de subir el nivel de exigencia en 2º de  Bachillerato, y que se presenten menos alumnos, pero mejor preparados, es muy, muy real. No tengo idea de si esto está pasando, pero lo frustrante es que sería realmente fácil de evitar: bastaría con presentar los datos completos, de alumnos matriculados en el centro, alumnos que superan 2º de Bachillerato, y luego los resultados de la PAU. Algunas veces, hacer las cosas mejor es realmente sencillo!

La derivada en 1º de Bachillerato (II)

Parece que está claro que el tema de cómo tratar la derivada en 1º de Bachillerato genera cierto debate. Me parece muy bien, siempre ha sido uno de los objetivos de este blog. Sigue en la lista una entrada sobre cómo se trata la introducción de la derivada en otros lugares, pero antes de eso me ha parecido conveniente aclarar los datos sobre uno de los argumentos más repetidos (no sólo en los comentarios, también siempre que hablo del tema con amigos profes). Se oye con bastante insistencia eso de que las derivadas se complican enseguida porque “es lo que les van a pedir en selectividad”. Como digo, es una tarea que tenía pendiente, y este debate me ha decidido a vencer la pereza y lanzarme a ello. Estos son los ejercicios que involucran una derivada en las PAU de Madrid en los últimos cuatro años, aquellos a los que tengo fácil acceso en mi universidad.

  • Junio de 2010:
    Opción A, ej. 4. Preguntan los intervalos de crecimiento y decrecimiento de la función f(x) = \ln(x^2+4x-5).
  • Septiembre de 2010:
    Opción B, ej. 2. Preguntan representación e intervalos de concavidad de la función  f(x) = \displaystyle \frac{3x^2+5x-20}{x+5}.
  • Junio  de 2011:
    Opción A, ej. 3. Extremos absolutos de la función f(x)=\sqrt{12-3x^2}.
    Opción B, ej. 1. Para qué valor de a la función \displaystyle f(x)=\frac{ax^4+1}{x^3} tiene un mínimo relativo en x=1. Para ese valor, encontrar los extremos absolutos.
  • Septiembre de 2011:
    Opción A, ej. 1. Hallar el conjunto de puntos en los quela función f(x)=\sqrt{x^2-9x+14} tiene derivada.
  • Junio de 2012:
    Opción A, ej. 3. Dada f(x)=x^3+ax^2+bx +c, hallar a, b y c para que f alcance en x=1 un mínimo relativo y tenga en x=3 un punto de inflexión.
    Opción B, ej. 1. Dada $\displaystyle g(x)=(\ln x)^x$, calcula g'(e).
  • Septiembre de 2012:
    Opción A, ej. 1. Dada la función definida a trozos f(x)=3x+A si x\leq 3 y f(x)=-4+10x-x^2 si x>3, halla los puntos en que la derivada se anula y los extremos absolutos en el intervalo  [4,8].
    Opción B, ej. 2. Calcula la ecuación de la recta normal a la gráfica de f(x)=x^2 \sin x (en un punto dado).
  • Junio de 2013:
    Opción A, ej. 3. Ecuación de la recta tangente en un punto a la gráfica de \displaystyle f(x)=\frac{x^3}{(x-3)^2}.
    Opción B, ej. 1. Extremos absolutos y puntos de inflexión de f(x)=2\cos^2 x en el intervalo [-\pi/2,\pi/2].
  • Septiembre de 2013:
    Opción A, ej. 1. Intervalos de crecimiento y decrecimiento de la función \displaystyle f(x) = \frac{4}{x-4}+\frac{27}{2x+2}.
    Opción B, ej. 3. Ecuación de la recta tangente en un punto a la gráfica de \displaystyle f(x) = \frac{x}{x^2+1}.

Mi conclusión es clara: la mayoría de los ejercicios de cálculo de derivadas que he visto en el cuaderno de mi hija tras dos semanas de derivadas en 1º de Bachillerato son más complicados que los que aparecen en la PAU. Insisto: ya sé que la intención es la mejor, y por supuesto no tengo claro cómo de generalizado está este enfoque, pero todo me hace pensar que no vamos por buen camino. Y, por supuesto, tampoco estoy diciendo que este problema sea específico del bachillerato. En la Universidad, en muchos aspectos, caemos en el mismo tipo de errores.