Las tareas rutinarias, Polya dixit …

Una minientrada de vuelta a la actividad. Una de las tareas que me han tenido colapsado este mes de junio ha sido los trabajos fin de grado y máster. Ahora mismo empiezo a leer el último trabajo fin de máster, y comienza con una cita de Polya que conocía, pero que tenía olvidada. Me parece de total actualidad:

Un profesor de matemáticas tiene una gran oportunidad. Si dedica su tiempo a ejercitar a los alumnos en operaciones rutinarias, matará en  ellos el interés, impedirá su desarrollo intelectual y acabará desaprovechando su oportunidad. Pero si, por el contrario, pone a prueba la curiosidad de sus alumnos planteándoles problemas adecuados a sus conocimientos, y les ayuda a resolverlos por medio de preguntas estimulantes, podrá despertarles el gusto por el pensamiento independiente y proporcionarles ciertos recursos para ello.

George Polya (1945)

Dos rápidos comentarios:

  1. Nos hace mucha falta pensar en ello, no lo estamos haciendo bien: «el 90% de la población no sabe pensar«.
  2. Por supuesto que no es fácil cambiar la actitud de los alumnos, lo sé de sobras.
Anuncio publicitario

Las reglas de divisibilidad

Ahí siguen en el nuevo currículo de primaria ya publicado en el BOE: «Conoce y aplica los criterios de divisibilidad por 2, 3, 5, 9 y 10». Resulta curiosa la elección de los posibles divisores, porque si al final de primaria hay que hablar de un «criterio de divisibilidad por 2», o por 10, es que la cosa va muy mal … Por otra parte, ¿por qué 9 si, y 4 y 8 no? Pero no quiero entrar hoy en discusiones curriculares, sino que me gustaría centrarme en las matemáticas.

Lo primero que habría que aclarar es que, más que reglas de divisibilidad, de lo que habría que hablar es de cálculo de restos (naturalmente, sin necesidad de hacer la división). Y me parece un matiz importante: cuando empiezo a tratar el tema con mis alumnos de magisterio, todos tienen claro cuándo un número es divisible por 5. Sin embargo, si escribo en la pizarra 5427 y les pregunto que cuál es el resto al dividir entre 5, pocos tienen claro que la respuesta es inmediata, y que no hace ninguna falta calcular el cociente. En el caso del divisor 5 (y, naturalmente, para el 2 y el 10) es realmente muy sencillo, y no veo ninguna razón para que los alumnos no lo tengan totalmente claro al terminar primaria. De hecho, creo que trabajarlo junto con la división es una buena forma de profundizar en la comprensión de la división con resto.

Durante mis dos primeros cursos en la Facultad de Educación, traté este tema con la maquinaria de las congruencias. La primera razón para hacerlo fue que el cálculo de congruencias me parece una oportunidad excelente para «pensar desde cero». El tema no es difícil, pero eso de que 2+1 = 0 (módulo 3), es algo que pone a prueba la capacidad de abstracción de los alumnos. Sigo pensando lo mismo pero, teniendo en cuenta el escaso tiempo disponible, y las dificultades que seguimos detectando en contenidos más básicos, pensamos que lo mejor era dejar el cálculo de congruencias fuera del programa. Lo que hemos hecho estos últimos cursos es tratar el tema con el punto de vista de «aritmética con restos», que resulta más rápido y mucho más cercano a los contenidos de primaria.

Volviendo a las «reglas de divisibilidad», la siguiente, en orden de dificultad, es la del 4. Entender que para calcular el resto al dividir por 4 es suficiente considerar las unidades y las decenas es una aplicación básica de las descomposiciones de números, y de que 100 es múltiplo de 4. La observación es la de siempre: no tiene ningún sentido dedicarle horas y horas a ejercicios de descomposiciones numéricas, a lo largo de toda la primaria, cuando la mejor forma de entenderlas de verdad es verlas en acción. Una vez vista la del 4, no cuesta ningún trabajo incluir la del 8.

Y llegamos a las del 3 y el 9. Veamos cómo se puede calcular el resto de 85 al dividir por 3. Como 85 = 80 + 5, el reparto de 85 caramelos entre 3 niños se puede organizar, en etapas, de la siguiente forma: repartimos grupos de 10, y de cada grupo nos sobra, de momento, 1 caramelo. Por tanto, tras esta primera etapa tenemos pendientes de repartir 8 + 5 caramelos. Con este sencillo argumento, ya sabemos que el resto de 85 al dividir por 3 es el mismo que el resto de 8 + 5 al dividir por 3. Una vez entendida la propiedad para números de dos cifras, me parece sencillo ver cómo se extiende al caso general. Lo único que hace falta es darse cuenta de que todas las potencias de 10 tienen resto 1 al dividir por 3. Naturalemente, el caso del 9 es exactamente igual, precisamente porque las potencias de 10 también tienen resto 1 al dividir por 9.

¿Tiene sentido llevar este planteamiento a un aula de primaria? Creo que sí, pero me falta la experiencia de aula para estar más convencido. De lo que sí estoy convencido es de que, si se piensa que no se pueden – o que no hay tiempo para – explicar cómo funcionan ciertas reglas de divisibilidad, lo que habría que hacer es eliminarlas completamente del programa. ¿Qué se perdería? Cuando, a la hora de factorizar un número, se necesite comprobar si es divisible por 3, siempre existe la opción de hacer la división. El problema de introducir la regla sin explicación es el de siempre: hacemos un poco más profundo ese pozo de las matemáticas como conjunto inextricable de rutinas y recetas varias.

Un último comentario: una vez más se dejan fuera del currículo los casos más interesantes. Comprobar que la condición para que un número sea múltiplo de 6 es que lo sea de 2 y de 3 contribuye a mejorar la comprensión de los conceptos de múltiplo y de mínimo común múltiplo. El cálculo del resto me parece una oportunidad perfecta para una actividad de trabajo de aula. Se puede proponer calcular diversos restos al dividir por 2, por 3 y por 6, y buscar patrones en los resultados. Una vez detectado el patrón, entenderlo en términos de «reparto de caramelos» podría estar al alcance de muchos alumnos.

Geometría y razonamiento (II)

En los comentarios de la entrada anterior sobre este mismo tema surgió la problemática de demostrar cosas que «son evidentes». Es cierto que demostrar cosas que «se ven» tiene sus peligros, y ya escribí sobre ello en esta entrada sobre el Teorema de Bolzano. Lo que quiero presentar hoy son los dos resultados que más me gustan para intentar combatir este problema. El resultado no es nada evidente, quizá hasta desafía la intuición, pero se puede demostrar con geometría elemental.

El primero es sobre ángulos en la circunferencia. Me voy a permitir presentar el resultado, para los lectores que estén en mi situación de hace un par de años. Es un resultado que tenía completamente olvidado cuando lo redescubrí preparando las matemáticas para maestros, y que creo recordar que sólo lo estudié en el dibujo técnico de un primer curso de ingeniería, donde usamos el libro de Puig-Adam de Geometría Métrica (estoy hablando del curso 83-84,  estoy seguro de que de este tipo de cosas no quedan rastros en las ingenierías, seguramente de forma totalmente justificada). Lo que no sé si es tan explicable es que no volviera a oír hablar de estas cosas a lo largo de una licenciatura en matemáticas.

Los ánguloarco-capazs \angle APB y \angle AQB se llaman ángulos inscritos, y el ángulo \angle ACB es el ángulo central correspondiente. El resultado afirma que todo ángulo inscrito es la mitad del central correspondiente. En particular, por tanto, los ángulos \angle APB y \angle AQB son iguales, e iguales al ángulo \angle AXB si X es cualquier punto del arco de circunferencia de color morado en la figura, que se llama arco capaz del segmento AB. Pues bien, que el ángulo \angle AXB sea el mismo en todo el arco de circunferencia, es un resultado que no es muy intuitivo, en particular cuando el punto X está cerca del punto B. Hay varias demostraciones de este resultado. Esta es la que me parece más sencilla de entender:

Veamos priarco-capaz-caso-1mero el caso en que el segmento PA es un diámetro, como en la figura. En este caso, el resultado de deduce de manera inmediata de la observación de que el triángulo CBP es isósceles.

La segunda parte de la demostración se basa en la observación de que el caso general se puede reducir al primero, considerando el diámetro que pasa por C, tal y como se muestra en la figura. El resto es sólo escribir el argumento, aunque es cierto que si se decide hacerlo la elección del lenguaje más adecuado es importante.

arco-capaz-caso-2

El segundo es sobre secciones de pirámides (y prismas): si consideramos dos pirámides de igual base y altura, como las de la figura, y las cortamos por un plano horizontal, las secciones que se obtienen son iguales.

piramideLa demostración de esto la voy a dejar como «ejercicio para el lector». Me parece una aplicación muy bonita de la semejanza de triángulos, ya que lo que hay que hacer es simplemente demostrar que, en los dos casos:

  1. el triángulo que se obtiene al cortar la pirámide con un plano horizontal es semejante a la base.
  2. la razón de semejanza depende sólo de la altura del plano de corte.

Un último comentario: en especial en este segundo ejemplo, lo que he visto en muchos de mis alumnos es una especie de «reacción complementaria» a la que se produce cuando les demuestras algo «que se ve». Este resultado no es muy intuitivo, y cuando termino la demostración lo que veo en muchas caras es algo así como «vale, las matemáticas dirán lo que quieras, pero yo sigo viendo otra cosa» …

Geometría y razonamiento

Hoy tengo que escribir sobre un fracaso. Una de las asignaturas que imparto en magisterio es Matemáticas II, y está dedicada esencialmente a la Geometría (mas un tema de Estadística y Probabilidad). Como ya he escrito en alguna ocasión (y, por supuesto, no estoy descubriendo nada), un valor esencial de la geometría es que es el marco ideal para iniciarse en el razonamiento lógico. Aunque este aspecto está completamente desaparecido de nuestro currículo, uno de los objetivos importantes en mi planteamiento de la asignatura es intentar solventar ese problema. Como les digo a mis alumnos cuanto protestan porque les pido cosas que no están en los programas, espero que muchos de ellos estén dando clase en el año 2050, y espero que para entonces hayamos conseguido reconducir nuestro currículo de matemáticas básicas.

Pero tampoco este segundo año he quedado mínimamente satisfecho con el resultado. La realidad es que la proporción de alumnos que consiguen completar un argumento, por sencillo que sea, al final del curso, ha sido deprimentemente baja.

Como ya era el segundo año que impartía la asignatura, insistí una y otra vez en que los datos eran los que daba el enunciado y no lo que parecía que ocurría en la figura «a ojo». La corrección del parcial me enfrentó de bruces con la realidad de lo difícil que es cambiar los esquemas mentales de las personas (por cierto, uno de los hechos básicos de la psicología al que me parece que no se presta suficiente atención en la formación del profesorado, y que tenemos que ir descubriendo tropezón a tropezón). Éste era el problema:

congruencia-ex-parcial

Los argumentos que usaron aproximadamente el 90% de los alumnos se sustentaban, de una manera o de otra, en que la figura es simétrica respecto de la recta definida por A y R (por supuesto, sin argumentarlo en absoluto: simplemente, «se ve»). El resultado me pilló completamente de sorpresa. Tenía claro que seguramente para la mitad de los alumnos el problema resultaría demasiado complicado, pero hubo muchos casos de alumnos trabajadores, y que me parecía que estaban siguiendo la asignatura, que cometieron el error ante el que les había tratado de prevenir de forma reiterada. (1)

Por supuesto, tras el parcial no quedó otra que seguir insistiéndoles en los errores cometidos, y en el examen final intenté buscar un ejercicio menos complicado, pero que también requiriera un mínimo nivel de razonamiento. El problema lo encontré en este blog, que me descubrió @DavidBarba2 y que me parece absolutamente recomendable. Es el apartado b) de este problema:

bisectrices-ex-finalUn detalle que me parece importante, y que quiero aclarar, es que para este tipo de preguntas no estoy especialmente interesado en el «rigor formal» o en el uso exhaustivo del lenguaje matemático. Un error que me parece muy frecuente en el inicio del razonamiento es introducir demasiado pronto un exceso de formalismo, que se convierte en una dificultad adicional (como creo que ocurre en las «two column proofs» de la geometría de High School en EEUU).

Un argumento del estilo de:

  • como las rectas r y s son paralelas, los ángulos a y b son suplementarios
  • por tanto, la mitad de a mas la mitad de b suman 90 grados
  • luego el tercer ángulo del triángulo PQZ es recto

me parece perfectamente válido, y así lo traté en la corrección.

Los resultados fueron mejores que en el caso anterior: 50 de los 152 alumnos presentados contestaron la pregunta de forma esencialmente correcta. De todas formas, el resultado sigue sin parecerme satisfactorio dada la (escasa) dificultad de la cuestión. Y, por supuesto, una cantidad aproximadamente igual contestaron algo en la línea de «se ve» que los segmentos PZ y QZ salen perpendiculares, y por tanto el triángulo es rectángulo …

Reconozco que esta entrada ha sido básicamente una catarsis personal. Querría terminar con mis conclusiones básicas. Como siempre que hablo de mis estudiantes de magisterio, debo aclarar que en ellos veo a un estudiante medio de nuestra ESO.

  • casi todos llegan sin distinguir algo que «parece ser cierto» de algo que «podemos comprobar que es cierto». Más aún, una buena parte sigue sin distinguirlo al final de curso.
  • llegan sin la idea de qué significa comprobar (demostrar) una afirmación, y está claro que menos de la mitad lo entienden tras dedicarle horas al tema.
  • más aún: la mayoría llega en el nivel 1 de van Hiele (no distinguen definiciones de propiedades). Se supone que es el nivel de un niño de primer ciclo de primaria. Tras tantos años estancados en ese punto, muchos de ellos no consiguen progresar …

(1) Aclaración: evidentemente, siempre que nos enfrentamos a un problema hay que tener claro de qué herramientas disponemos, y quizá no es del todo evidente en el texto. Los criterios de congruencia de triángulos son uno de los contenidos importantes del curso.

¿Quién mató a la geometría?

Ayer @lolamenting lanzó una pregunta muy interesante: ¿por qué la geometría está prácticamente desaparecida de nuestras aulas de primaria y secundaria? Contesté en cuanto la leí, casi sin pensar (es difícil sustraerse del todo al lado oscuro de las nuevas tecnologías), diciendo que me parecía una pregunta muy importante, y muy difícil de contestar. Me reafirmo en la primera parte, pero no en la segunda. Desde luego, voy a dar una respuesta especulativa, pero me parece que bastante convincente. Lo que me parece claro es que en la enseñanza de las matemáticas se han producido dos fenómenos muy claros:

  • A. Los currículos, pero sobre todo la práctica diaria en la mayoría de nuestras aulas, se han deslizado hacia la parte más mecánica de las matemáticas: algoritmos, fórmulas, rutinas, y recetas varias. La resolución de problemas, el razonamiento lógico y la comprensión conceptual son especies en peligro de extinción.
  • B. La geometría ha perdido peso en el curriculo, pero todavía más en las aulas. Es una de esas partes por las que se suele pasar más deprisa (junto con la estadística).

Mi tesis es bien sencilla: A explica – y es la causa de – B. ¿Qué caracteriza a la geometría? Sin duda, lo importante que son en ella el razonamiento lógico y la resolución de problemas (la comprensión conceptual es simplemente requisito previo de ambos). Esto ya me parece suficiente explicación: tenemos dos fenómenos, A y B,y el primero explicaría el segundo. Si la navaja de Ockham sigue afilada, lo más probable es que sea su causa.

Pero es que además hay varios argumentos adicionales que refuerzan esta explicación: ¿qué geometría se estudia y cómo se hace? Al principio, una buena parte del tiempo se dedica al cálculo de áreas y volúmenes, donde todo se reduce a memorizar una lista de fórmulas mucho mayor de lo necesaria, y a aplicarlas a ejercicios completamente rutinarios. Cuando avanza la secundaria, el estudio de la geometría se inclina claramente hacia el álgebra: en trigonometría, por ejemplo, se dedica mucho más tiempo a las identidades trigonométricas, o a resolver ecuaciones, que a los problemas.

Que esta tendencia está llegando a extremos inquietantes me ha quedado claro con el comentario de @lolamenting en esta entrada: parece que no es extraño encontrar profesores que impiden a los chicos apoyarse en la intuición geométrica para resolver problemas de fracciones. Sin exagerar, me parece que es una de las cosas más alarmantes, e incomprensibles, que he oído en los últimos años.

Por supuesto, en otras partes la situación no es la misma. Termino la entrada con unos ejemplos de los libros de primaria de Singapur. En general, la geometría tiene una presencia mucho mayor que aquí, ya desde primaria. En particular, usan los problemas de ángulos para iniciar a los niños en el razonamiento geométrico, y creo que lo hacen muy bien. Este es un ejemplo de 4º de Primaria:

angulos-4Este otro de 5º:

angulos-5y, por último, el de 6º:

angulos-6Por supuesto, siguen con el tema en secundaria. En algún momento habrá una entrada dedicada a profundizar en este tema.

Uso y abuso de las fórmulas I – Áreas

Este verano las fórmulas han estado de moda. Primero, la de sostenibilidad de las pensiones; luego, la fórmula para el cálculo de las becas. Por supuesto, la reacción ante ellas ha sido la de siempre, en la línea con el aviso que cuentan los autores de libros de divulgación: con cada fórmula que aparezca en el libro perderás lectores. Las fórmulas no son más que un aspecto del lenguaje de las matemáticas, aunque es verdad que uno de los aspectos que puede resultar menos intuitivo. Sobre todo, si como con muchas otras cosas cometemos el error de introducir demasiadas y demasiado pronto, sin dedicarle el tiempo adecuado a la comprensión. Un tema en el que me parece que esto queda muy claro es en el cálculo de áreas, al final de primaria y durante la ESO. Voy a dedicar esta entrada a reflexionar sobre el uso de las fórmulas para el cálculo de áreas de figuras planas. Creo que todos los profesores de final de bachillerato, y primeros cursos universitarios nos hemos escandalizado ante alumnos que no recordaban fórmulas básicas. Me parece que la principal razón es que hay realmente demasiadas fórmulas, y que deberíamos pensar con cuidado cuáles son realmente necesarias.

Como primer ejemplo de fórmula superflua (bueno, más que superflua, diría perjudicial), pondría la del área de un polígono regular, en la figura.

area-n-gono

No se trata sólo de que la fórmula aparezca muchas veces sin justificación. Por mucho trabajo que nos tomemos en deducir la fórmula en clase, si después lo que hacemos al resolver los problemas es recurrir a la fórmula, lo que quedará en la cabeza de la mayoría de los alumnos será esa fórmula final (bueno, quedará durante un tiempo, claro, porque es un tipo de conocimiento que no integran en sus esquemas mentales, un conocimiento no significativo, y que la mayoría olvidarán un tiempo después). ¿Qué ventaja tiene esta fórmula sobre el hecho de que un polígono regular de n lados se puede descomponer en n triángulos iguales? Por el contrario, yo si le veo una ventaja a esta segunda opción: se inserta en cosas que ya se conocen, y permite repasar el área del triángulo cada vez que se resuelve un problema de esta forma. Se trata de un ejemplo de manual de aprendizaje significativo.

 ¿Y los trapecios? El otro día pregunté en mi clase de 3º de magisterio por el tema. Muy pocos, claramente por debajo del 10%, recordaban la fórmula para el área de un trapecio. De nuevo, una fórmula fácil de deducir pero, ¿merece la pena? ¿No es mucho mejor que se den cuenta de que un trapecio se descompone fácilmente en dos triángulos, ambos de altura h, uno con base b y otro con base a? En este caso, además, hacerlo así permite trabajar triángulos en posiciones «no usuales», una fuente de problemas para muchos alumnos hasta bien avanzada la secundaria.

trapecioPero sin duda las fórmulas que primero eliminaría de las aulas son las de la longitud de un arco de circunferencia y el área de un sector circular.

sector-circular

¿Por qué? Pues porque cada vez que las usamos estamos desperdiciando una magnífica oportunidad de repasar el concepto de proporcionalidad. Peor aún, cada vez que las utilizamos estamos reforzando esa imagen de las matemáticas elementales como un conjunto de recetas y fórmulas arbitrarias, sin conexión entre sí, y estamos perdiendo una magnífica oportunidad de mostrar las matemáticas como lo que son: un conjunto coherente y unificado de principios, conceptos y relaciones, donde abundan las conexiones entre distintas áreas, y donde nada es porque sí. Adaptando el título del blog a el tema del cálculo de áreas, diría que lo que hace falta es más razonamiento y menos fórmulas.

Para terminar, voy a atreverme a hacer un resumen de las fórmulas que creo necesarias para el tema de figuras planas:

  • área de los paralelogramos y de los triángulos
  • longitud de la circunferencia y área del círculo

¿Olvido alguna?

Por supuesto, cuando pasamos al tema de volúmenes de sólidos y área de superficies la situación empeora. Revisaré este tema en una próxima entrada.

Esta entrada participa en la edición 4.123105 del Carnaval de Matemáticas, cuyo anfitrión es el blog Cifras y Teclas.

a+b+c = 180 º

Mi intención hoy es reflexionar sobre cuál es la mejor manera de presentar a los alumnos (digamos de 4º – 5º de primaria) el hecho de que la suma de los tres ángulos de un triángulo es 180º. Antes de nada, una aclaración (seguramente innecesaria): cualquiera de las opciones que voy a presentar, o cualquier otra que se nos pueda ocurrir, será mucho mejor que lo desgraciadamente habitual en nuestras aulas – el libro enuncia el resultado, como «verdad revelada», y a partir de ahí el hecho es cierto «porque lo dice el libro».

Claramente, el resultado debería ser introducido de forma experimental, midiendo los ángulos en una serie de triángulos y comprobando que la suma es en todos los casos (aproximadamente) 180º. Pero me parece esencial una segunda fase, en la que se presente un argumento general. Veamos dos opciones:

Opción 1: en la figura vemos la idea, creo que suficientemente conocida. Se colorean los ángulos de un triángulo hecho en cartulina, luego el triángulo se recorta por las flechas, y se comprueba que los tres ángulos completan un ángulo llano.

angulos-triangulo-colorear

Opción 2: se considera la recta paralela a uno de los lados que pasa por el vértice opuesto. Evidentemente, este enfoque requiere haber trabajado antes la igualdad de los ángulos alternos-internos. (Este es un resultado más sencillo de entender y, en todo caso, se puede comprobar fácilmente recurriendo al corte de una cartulina).

angulos-triangulo-paralela

Me falta la experiencia de aula para decantarme claramente por una de las dos opciones (o por alguna otra). Si tengo que dar mi opinión, me inclino por la segunda. Es muy posible que mi gusto por las matemáticas me condicione demasiado, pero creo que el argumento es suficientemente sencillo para que se entienda ya en estos cursos, y le veo dos ventajas: la primera, su belleza; la segunda,y más importante, que muestra cómo un resultado matemático – un teorema – se deduce usando resultados previamente establecidos. ¿Qué opináis?