Dos ciclistas están en dos pueblos distintos, a una distancia de 112 km. Empiezan a pedalear, a la vez, para encontrarse. Uno va a 18 km/h, y el otro a 22 km/h. ¿Cuánto tiempo tardan en encontrarse? (Debes resolver el problema sin usar razonamientos algebraicos, y dar el resultado en horas, minutos y segundos).
Este es un problema que, con variantes, planteo cada año a mis estudiantes de Matemáticas I. Tras varios años de observar los patrones de respuesta de los alumnos, he detectado varias cosas interesantes, y que creo que pueden ser de interés para algunos lectores.
La primera observación es que, cuando no les permites usar el álgebra, la mayoría (hablo al menos de 3/4 partes de los alumnos, que sí lo intenta, porque hacen otros probleas de la hoja) no consiguen hacer nada. Este detalle de prohibirles el álgebra es un tema de reflexión en sí mismo, desde luego. Encantado de recibir ideas al respecto, y ya tengo apuntado el tema para una futura entrada. De momento, me limitaré a decir que, desde mi punto de vista, el uso del álgebra para resolver problemas como éste empobrece el aprendizaje de la aritmética.
En la clase en la que tratamos los problemas, los alumnos a los que pregunté –y que habían hecho algo– empezaron con la idea de que «es lo mismo que si los dos ciclistas se movieran a una velocidad de 20 km/h». Tratar de convencerles (a ellos y al resto de la clase) de que también es lo mismo que si un solo ciclista se mueve a 40 km/h, costó sorprendentemente mas. De hecho, creo que no lo conseguí hasta que no cambié ciclistas por pintores, la carretara por una valla (y los km por m, por aquello de las «matemáticas realistas»).
Pero la segunda parte me parece también interesante: el problema que tenemos ahora es cuánto se tarda en recorrer 112 km si nos movemos a 40 km/h. Supongo que entendieron que esa prohibición del álgebra se extendía a «fórmulas de la física» (así le llaman a cosas como e=v.t) — y aquí acertaron, esa era mi idea–. Lo que hicieron entonces es razonar que en 2 horas recorren 80 km, en media hora mas otros 20 km, y continuaron dividiendo hasta la solución final. Ya se que algún lector puede estar pensando que no eran «soluciones independientes». Fueron tres grupos, y digamos que pregunté lo suficiente para convencerme de que sus razonamientos sí eran personales, además de que en los tres casos se trataba de alumnos que apuntan muy buenas maneras en la asignatura.
Y todo esto, a pesar de que la semana anterior habíamos trabajado en la teoría la división, y nos habíamos parado en sus dos significados. Esta dificultad no me sorprendió, ya lo había visto otros años (por eso el problema estaba formulado de esta forma; si la distancia hubiera sido de 120 km, no habrían tenido ningún problema con esta parte). Resulta realmente llamativa la dificultad de comprensión de la división cuando el cociente o el divisor no son números enteros. La causa la tengo clara: demasiadas divisiones hechas en primaria, con poca atención a su significado.