Jornada en el CTIF Madrid-Este

Ayer jueves 7 de marzo empezó el curso Matemáticas en el Siglo XXI, organizado por el CTIF Madrid Este, y hablamos sobre la Metodología Singapur. Dado el número de inscritos (400), me pareció una buena ocasión para tratar de obtener información de cuáles son los algoritmos que estamos usando en nuestras aulas. Para ello usé la herramienta Mentimeter, que permite preguntar y recoger las respuestas de la audiencia en tiempo real. La versión gratuita está limitada a 3 preguntas. Como me comprometí ayer, aquí están las respuestas recibidas.

La primera pregunta era sobre el algoritmo de la resta. Describo las opciones, porque la calidad de la imagen puede hacer difícil entenderlas. De izquierda a derecha:

  1. el algoritmo “tradicional”, que verbalizamos “de 8 a 13 me llevo una”, que luego sumamos al número que aparece en la columna de la izquierda en el sustraendo.
  2. el algoritmo que hace reagrupamientos en el minuendo, cuando es necesario. En esta entrada se puede ver una descripción con un ejemplo.
  3. algoritmos ABN (también descritos en la entrada anterior).
  4. algoritmos ABN en los primeros cursos, y el tradicional luego.
  5. el algoritmo de 2. en los primeros cursos y el tradicional luego.
  6. otras opciones.

El resumen rápido es que el algoritmo tradicional sigue siendo el tradicional, sobre todo en los últimos cursos de primaria, donde parece que se usa en 2/3 de las aulas (esto seguramente tiene que ver con la división, y el hacerla sin escribir las restas, tema sobre el que ya he escrito anteriormente).

Como comenté ayer, lo que me parece claro que habría que evitar es la situación de los alumnos que hacen restas de una forma que entienden en los primeros cursos, y que luego cambian de manera de restar. Es una dificultad artificial que no deberíamos poner en su camino.

La segunda pregunta fue sobre el algoritmo de la división, y aquí las alternativas fueron:

  1. el algoritmo comprimido (sin escribir la resta)
  2. el algoritmo extendido (escribiendo la resta)
  3. el algoritmo ABN
  4. el extendido al principio, y el comprimido al final de Primaria.
  5. el algoritmo ABN al principio, y el comprimido al final de primaria.
  6. otras opciones.

Como vemos, al final de Primaria la opción de comprimir el algoritmo, y no escribir las restas, es claramente mayoritaria. El propósito de esta entrada es solo mostrar los resultados de la encuesta, y no voy a volver a escribir sobre este tema, porque volvería a decir cosas parecidas a las que escribí en esta otra entrada.

 

Por último, como al final no hubo tiempo, la última pregunta que me daba Mentimeter la usé para admitir preguntas abiertas, con el compromiso de contestarlas en el blog. Esta fue la única pregunta que llegó:

  • ¿Qué alternativas ofrece el método Singapur para aquellos alumnos que no son capaces de representar mediante gráficos de barras los problemas a resolver? ¿Cómo mejoran su resolución de problemas?

No conozco una alternativa al modelo de barras. No es milagroso, desde luego, y puede haber alumnos a los que les cueste empezar a usar las barras para dibujar los datos. Pero en ese caso lo que hay que hacer es detenerse en ese punto el tiempo necesario. Estas serían mis observaciones (reconociendo que necesitan ejemplos de aula para poder ser más precisas. De hecho, si algún docente se anima a tratar de hacer una investigación de aula en este tema, investigando el proceso y prestando atención a los alumnos con dificultades, podemos hablar del tema, me interesa mucho).

  1. Seguimos haciendo problemas con números pequeños, que se pueden representar con materiales, como los policubos.
  2. Avanzamos, dibujando esa información, con barras divididas en las que se ven las unidades.
  3. Los números van creciendo, algunos alumnos pueden seguir necesitando dibujar esas unidades.
  4. En algún momento dan el paso de prescindir del dibujo de las unidades, y abstraen la cantidad sin necesidad de esa división.

Actualización (14-05-2019). Disponible el vídeo de la mesa redonda “Matemáticas del Siglo XXI”, en la que debatimos con José Antonio Fernández Bravo y Jaime Martínez Montero: https://mediateca.educa.madrid.org/video/k4zumebv1oki34ip

Anuncios

Prueba externa al final de la secundaria obligatoria

El pasado jueves estuve en Valladolid, en una formación sobre la metodología Singapur. Fueron dos jornadas muy interesantes, y una de las principales razones fue que los asistentes estaban divididos, casi a partes iguales, entre docentes de primaria y de secundaria. Uno de los temas de los que hablé fue la, desde mi punto de vista, excesiva complejidad técnica a la que sometemos a nuestros estudiantes durante la ESO. La imagen siguiente es la que suelo mostrar para explicar a qué me refiero.

A la izquierda tenemos una imagen tomada de uno de nuestros libros de 3º de la ESO, no importa cuál, estuvimos de acuerdo que son ejercicios estándar en ese curso. A la derecha, una imagen tomada del curso análogo, 3º de la secundaria obligatoria, de Singapur. Es verdad que el tema no es exactamente el mismo, pero es que la simplificación de potencias de fracciones algebraicas, como la que se muestra a la izquierda, simplemente no se puede encontrar en los libros de Singapur. Un detalle adicional es que el libro de Singapur corresponde a la “vía académica”. Al final de primaria ya hay una separación de alumnos (por lo que he leído, alrededor del 15% son dirigidos, al terminar la primaria – de 6 años, como la nuestra – a la vía que aquí llamaríamos formación profesional). Quede claro: esta separación no me gusta. Lo único que digo es que allí, en la vía académica, las matemáticas obligatorias son mucho menos técnicas que las nuestras, con nuestra educación de diseño comprensivo. Este énfasis en técnicas complicadas es, desde mi punto de vista, responsable de dos de nuestros problemas más importantes con las matemáticas en la secundaria:

  1. el problema del fracaso escolar y el abandono temprano.
  2. la aversión a las matemáticas que desarrollan una cantidad relevante de nuestros estudiantes.

A la vista de la imagen anterior casi siempre surge la pregunta de ¿qué estudian, entonces, en la secundaria de Singapur? Creo que una buena forma de contestar es enseñar la prueba externa correspondiente. Aclaración preventiva: no pretendo entrar en el debate sobre pruebas externas sí o no, solo digo que me parece una buena forma de mostrar qué matemáticas estudian, con qué profundidad, y con qué orientación. Ya dediqué entradas a las pruebas al final de primaria (1) y (2), y la análoga a nuestra “selectividad”, de manera que la que quedaba pendiente es la correspondiente al final de la secundaria obligatoria.

La “ESO” de Singapur tiene una estructura diferente a la nuestra, y para contextualizar la prueba voy a tratar de explicarla. La primera opción de un estudiante es si tomar la “vía Express” o la “normal”. El punto de llegada es el mismo, pero en la primera opción se llega en 4 cursos, mientras que en la segunda se llega en 5. No tengo datos sobre cuántos alumnos toman cada una. En esos cursos tienen una asignatura de matemáticas, obligatoria, y en los cursos finales aparece una asignatura “Additional Mathematics”, dirigida a los que serán estudiantes de ciencias y carreras técnicas. El ejemplo anterior corresponde a la asignatura general, y las diferencias quedarán más claras en las pruebas externas que luego enlazo. Este diseño se corresponde con un lema que les leí en algún sitio, y que me parece que merece, al menos, una reflexión: “matemáticas para todos, más matemáticas para algunos”. No tengo datos sobre cuántos alumnos cursan esas “matemáticas adicionales”, y me encantaría tenerlos, porque como podréis ver si echáis un vistazo a la prueba externa correspondiente el nivel es “llamativo”.

Por último, al terminar esta etapa hay dos pruebas externas, el “N-level” y el “O-level”. La “N” viene de “normal” y la “O” de “ordinario”, así que el nombre no clarifica mucho. Lo que sí queda claro al verlas es que la dificultad del nivel “O” es mayor que la del nivel “N” y por lo que he leído parece que el N-level es la prueba que hacen los estudiantes que dejan en ese momento la formación de la vía académica, mientras que el O-level es el necesario para los que quieren cursar el análogo a nuestro Bachillerato.

Un último comentario: hay una lista oficial de las fórmulas que se pueden usar en el examen (y que proporcional al alumno en papel, lo que es toda una declaración sobre el lugar de la memorización en su enseñanza-aprendizaje de las matemáticas) y hay también una lista de las calculadoras que se pueden usar.

Las dos pruebas tienen la misma estructura, dos partes. La primera, de dos horas, la segunda, de dos horas y media. Aquí están:

Si algún lector quiere información adicional, estos son los enlaces a los documentos que regulan estas pruebas: Mathematics, Additional Mathematics.

Un último comentario: pueden parecer pruebas de otro planeta, lo sé. Pero creo que cualquier paso que nos moviera en esa dirección sería positivo, porque me parece que estamos bastante desorientados en el tema de qué es la competencia matemática. Personalmente, me parece que muestra mucha más competencia matemática un alumno que supera una de las pruebas que he mostrado que otro que supera una prueba como las que nos presentan como “evaluación de la competencia matemática“.

Un último añadido: si algún voluntario puede traducir estos exámenes, para ayudar a su difusión, sería estupendo. Se podrían poner también aquí. Yo no voy a tener tiempo para ello. ¿Qué tal un proyecto en ShareLaTeX para hacerlo entre varios?

Añadido el 3 de diciembre: un amable lector del blog ha sido realmente rápido traduciendo las pruebas, y las ha puesto a nuestra disposición en los comentarios. Aquí están los enlaces directos a las diversas pruebas:

 

Resumen del año … otra vez

Ha sido un curso casi en blanco para este blog, una única entrada, en febrero. Claro que me alegra mucho comprobar que, desde el punto de vista de los lectores, la realidad es muy distinta. Si hace un año, a punto de cumplir los 5 años de vida, daba las gracias a los lectores por llegar a las 200 mil visitas, un año después tengo que reiterarme, ya que a pesar de la casi nula producción de entradas estamos cerca de las 300 mil.

El motivo de la ausencia de entradas ha sido el exceso de trabajo, claro. Después de varios años de escribir para tratar de que se conociera la metodología Singapur, se me presentó la oportunidad de colaborar con la editorial Polygon durante el curso 2016-2017 en la implantación de unos libros de texto, y ya en junio de 2017, y durante todo este curso, con la editorial SM y su proyecto Piensa infinito, Matemáticas Singapur.

Ha sido mucho trabajo, porque hemos colaborado en las formaciones de los docentes, y en las visitas a las aulas de los colegios del piloto. Los colegios del piloto empezarán en septiembre con 3º de Primaria, y el plan es por supuesto avanzar año a año hasta completar la etapa de primaria. En este curso no hemos podido evaluar de manera rigurosa los resultados de la implantación, porque el equipo era reducido y hemos priorizado la formación y la asistencia. Pero mis sensaciones son buenas, muy buenas. Y son sensaciones basadas en lo que he visto en las visitas a las aulas, sobre todo en la segunda visita a las aulas, en los meses de abril y mayo. Porque si bien en la primera visita (en octubre y noviembre) ya se observaban cosas muy positivas, también aparecían algunas dificultades – creo que inevitables cuando se produce un cambio profundo en la forma de trabajar – ha sido en la segunda visita cuando hemos podido comprobar que el curso acababa muy bien, y que la gran mayoría de los docentes tenían una valoración muy positiva del cambio. Una de las cosas que más valoran los docentes es la capacidad que observan en sus alumnos para explicarse, para hablar de matemáticas. Espero que para el curso próximo ya seamos capaces de recoger algún tipo de evidencia sobre los resultados. Al menos, tendremos seguro los resultados de los colegios del piloto en la prueba de 3º de Primaria. Conocidas las pruebas, y después de escuchar a los alumnos que estaban terminando 2º, no tengo dudas de que serán muy positivos.

Lo que sí está ya disponible es el informe sobre el proyecto Maths no Problem, que es la adaptación a Gran Bretaña de los libros de Singapur que SM ha traído a España.  En Gran Bretaña empezaron hace ya algunos años (el informe es de 2016) y además con bastante dinero público detrás. El informe se puede descargar  aquí.

Parece que también en Francia empezará un programa piloto el curso próximo. Desde un punto de vista personal, debo reconocer que ha sido una satisfacción escuchar al gran matemático francés Cedric Villani, medalla Fields en 2010, y últimamente dedicado a la política, defendiendo la metodología Singapur como una buena opción para mejorar la enseñanza de las matemáticas en Francia.

Espero que todos recarguemos pilas estas próximas semanas. El curso próximo se presenta tan interesante, y extenuante, como este. Además de la colaboración en Piensa infinito, ya tengo algunas intervenciones comprometidas, como esta, el 17 de septiembre, en la Universidad de Otoño que organiza el Colegio Oficial de Docentes. Y otra el 10 de noviembre, en León, en un congreso que organiza la Junta de Castilla y León y en el que espero poder seguir conociendo lectores de este blog.

Añadido el 15/07/2018: una última cosa que olvidé ayer. Estamos arrancando el Aula de Matemáticas Activas SM-UAH. Queremos que el aula se convierta en un espacio de colaboración, dedicado a la formación de docentes y, en general, a trabajar por la mejora de la educación matemática  en España.

Aunque sea ponerse la venda antes de tener la herida, unas palabra sobre lo de “activas”, porque soy consciente del debate que existe en torno a las “metodologías activas”. Poner nombres a las cosas siempre es complicado, y creo que en nuestro país pecamos demasiado de elegir entre extremos. De hecho, creo que uno de los secretos del éxito de la metodología Singapur es su eclecticismo, usando materiales manipulativos, pero teniendo presente que el objetivo final es manejar de forma competente las matemáticas “tradicionales”. De la misma forma, “activar” al niño es fundamental, que los docentes escuchen más sus razonamientos (como también leí ayer a la gran María Antonia Canals). Pero también es importante disponer de momentos de “instrucción dirigida”, donde se pueden presentar y/o consolidar las técnicas y procedimientos fundamentales. En resumen: no nos encasillemos en los nombres, y espero que pronto empecemos a rellenar el espacio con propuestas que den contenido a ese título.

 

La EvAU de Singapur

Me he forzado a sacar un rato para escribir una entrada, aunque sea breve, porque hace unos días estuve en Valladolid, invitado por la sociedad de profesores Miguel de Guzmán y por el centro de formación de profesorado, para presentar las ideas básicas de las matemáticas de Singapur, y quedé más o menos comprometido en enseñarles cómo es una prueba de nivel pre-universitario allí.

Una de las cosas más importantes que trato de transmitir es que van más despacio en el desarrollo curricular. Una pregunta que siempre surge es: vale, pero entonces, ¿hasta dónde llegan? Mi contestación siempre es que el ir más despacio y haciendo las cosas con calma les permite, a la larga, llegar más lejos (y, sobre todo, con mayor profundidad). Creo que una buena forma de hacerse a la idea es ver la prueba final que tienen, su análogo a nuestra EvAU (EBAU, o como se llame en cada lugar), la prueba de matemáticas previa al acceso a la universidad.

No es del todo inmediato, porque tienen tres niveles de matemáticas preuniversitarias, H1, H2 y H3, en orden creciente de dificultad. No he encontrado datos sobre cuántos alumnos se decantan por cada una de ellas, pero por los programas parece que las H3 son unas matemáticas realmente avanzadas, pensadas para los alumnos excelentes, y que llegan, por ejemplo, a ecuaciones diferenciales. Las H1 parecen ser las matemáticas básicas preuniversitarias, lo que seguramente podríamos equiparar a nuestras matemáticas aplicadas para ciencias sociales. Las H2 quedarían, por tanto, como las análogas a nuestro examen de Matemáticas II. Al final pongo el enlace a una edición de la prueba. Creo que hay varias cosas que nos pueden resultar llamativas:

  • La extensión. El examen tiene dos partes, de tres horas cada una. Es verdad que cualquier prueba puede tener efectos secundarios negativos, el conocido “teaching to the text”. Si un examen está bien pensado, y es exhaustivo, este problema puede tener consecuencias limitadas.
  • las tablas de fórmulas que aparecen al principio son parte del material que los alumnos pueden usar durante el examen. No hace falta memorizar fórmulas: ni identidades trigonométricas, ni tablas de primitivas. Una calculadora gráfica también es parte del equipamiento estándar.
  • pero lo más importante es la profundidad de la prueba, claramente fuera del alcance de nuestros estudiantes al terminar el bachillerato.

Aquí está la prueba (la versión original, en inglés).

Espero que la siguiente entrada no se demore otros 7 meses … Y espero poder escribir pronto sobre alguno de los proyectos en los que estoy involucrado, y que me tienen colapsado.

Prueba final de primaria de Singapur (II)

Aquí está la segunda parte:

  1. Sara compró 1,2 kg de uvas. ¿Cuánto le costaron?parte2-p1
  2. María pagó 945 € por una mesa y 4 sillas. El precio de cada silla era \frac{2}{7} del precio de la mesa. ¿Cuánto pagó María por la mesa?
  3. Rosa compró 150 naranjas y 100 manzanas para sus vecinos. Repartió las naranjas por igual y le sobraron 17 naranjas. También repartió por igual las manzanas, y le sobraron 5 manzanas. ¿Cuántos vecinos tiene Rosa?
  4. En la figura, ABCD es un cuadrado, EBFG es un rectángulo y \angle EBC = 252^{\circ}. Calcula \angle ABFparte2-p4
  5. Un jugador dispone de cuatro intentos en la primera ronda de una competición. La tabla muestra la puntuación que obtiene Pablo en los tres primeros intentos.
    parte2-p5Pablo se clasifica para la siguiente ronda si la puntuación media de tres de sus cuatro intentos es al menos 25. ¿Qué puntuación debe obtener Pablo en su cuarto intento para clasificarse?(En el resto de problemas se pide explícitamente que se muestre el razonamiento)
  6. En la figura, CDEF es un paralelogramo. AFC y BFE son líneas rectas y |BA|=|BC|. \angle ABF = 30^{\circ}\angle DEF = 54^{\circ}.
    (a) Calcula \angle EFC.
    (b) Calcula \angle FBC.parte2-p6
  7. Al principio Ben tenía 90 € y Sandra tenía 48 €. Cada uno compró una camisa del mismo precio. La cantidad de dinero que le quedó a Ben y a Sandra está en la razón 4 : 1. ¿Cuánto les costó cada camisa?
  8. Luis tiene un trozo de cuerda de longitud 13 w cm. Con una parte de la cuerda construye un triángulo cuyos lados miden w cm, 3 w cm y 20 cm.
    a) Expresa la longitud del resto de la cuerda en términos de w, de la forma más sencilla posible.
    b) Luis usó el resto de la cuerda para construir un rectángulo de 2 w cm de largo.  Si w = 6, ¿cuál es la anchura del rectángulo?
  9. En un concierto el 55 % de las entradas se vendieron al precio inicial y el 40% de las entradas se vendieron a mitad de precio. Sobraron 20 entradas, que se regalaron. En total, se recaudaron 7200 €. ¿Cuál fue el precio de venta inicial de las entradas?
  10. Una tienda ofrecía 80 impresoras con un descuento del 25% durante una semana de rebajas. El gráfico muestra la cantidad de impresoras que quedaban sin vender al final de cada día.parte2-p10a) ¿Qué día se vendieron más impresoras?
    b) ¿Qué porcentaje de las 80 impresoras se vendieron durante los tres primeros días de rebajas?
    c) Durante las rebajas, el precio de venta rebajado de cada impresora fue 120 €. Cuando terminaron las rebajas, el resto de las impresoras se vendieron al precio anterior, sin descuento. ¿Cuál fue la cantidad total del dinero obtenida de la venta de las 80 impresoras?
  11.  En un colegio, el 70% de los miembros de la orquesta y el 60% de los miembros del coro son niñas. La orquesta y el coro tienen el mismo número de niños. La orquesta tiene 20 niñas más que el coro. ¿Cuántos miembros tiene la orquesta?
  12. A las 11:50 Carla empezó a montar en bicicleta y se movía a 25 km/h. Fue desde su casa al parque, que estaba a 10 km. Estuvo en el parque 1 h 50 min.
    a) ¿A qué hora se fue del parque?
    b) Cuando se fue del parque, volvió a casa por el mismo camino y tardó 40 minutos. ¿Cuál fue la velocidad media de su viaje de regreso, , en km/h?
  13. La figura muestra un triángulo rectángulo.
    parte2-p13a) Calcula el área del triángulo.
    b) Daniel quiere cortar un triángulo como el de la figura de una pieza rectangular de cartón de 60 cm de largo y 100 cm de ancho. ¿Cuántos triángulos podrá cortar, como máximo?
  14. La figura muestra un camino de 2 m de ancho en un jardín rectangular de 28 m de largo. El borde del camino está formado por cuadrantes de circunferencia con centro W, semicircunferencias con centro en Z y líneas rectas. Sabemos que |WX|=|YZ|.

    a) ¿Cuál es la anchura del rectángulo del jardín?

    b) Calcula el área del camino. Toma \pi = 3.14.
    parte2-p14

  15. Yolanda rellenó dos tipos de botellas, grandes y pequeñas, con la bebida que preparó. Llenó 3 botellas grandes y 5 botellas pequeñas con 7.2 l de bebida.
    parte2-p15Con el refresco que le sobraba le faltaban 0.5 l para rellenar otra botella grande, pero sí pudo rellenar una botella pequeña, tras lo que le sobraron 0.3 l de bebida.

    a) ¿Cuál es la diferencia entre la capacidad de las botellas grandes y las botellas pequeñas?

    b) ¿Cuántos litros de refresco preparó Yolanda?

  16. Paula y Jaime compraron macetas que tenían los precios que se muestran en la figura.
    parte2-p16a) Paula compró el mismo número de macetas grandes que de macetas pequeñas, y se gastó 175 $ más en las macetas grandes. ¿Cuántas macetas compró en total?

    b) Jaime se gastó la misma cantidad de dinero en macetas grandes que en macetas pequeñas. ¿Qué fracción de las macetas que compró eran grandes?

  17. Ana, Bea y Coral son tres amigas que tienen el mismo número de monedas. Ana y Bea tienen cada una combinación de monedas de 50 céntimos y monedas de 10 céntimos. Ana tenía 9 monedas de 10 céntimos y Bea tenía 15 monedas de 10 céntimos. Coral tenía solo monedas de 50 céntimos.

    a) ¿Qué amiga tenía más dinero y qué amiga tenía menos dinero?

    b) ¿Cuál es la diferencia en valor total de las monedas que tienen Ana y Bea?

    c) Bea usó todas sus monedas de 50 céntimos para comprar comida. Después de eso tenía 10 € menos que Carla. ¿Cuántas monedas de 50 céntimos tenía Carla?

  18. Isabel usa palillos para hacer figuras que siguen un patrón. Las cuatro primeras se muestran a continuación.
    parte2-p18aa) En la tabla se muestra el número de palillos necesarios para hacer cada figura. Completa la tabla para la figura 5 y la figura 6.
    parte2-p18bb) ¿Cuál es la diferencia en el número de palillos necesarios para hacer la figura 9 y la figura 11?

    c) ¿Cuántos palillos necesitaría para hacer la figura 30?

Desde luego, da bastante que pensar … Recuerdo que el tiempo para esta parte es 1 h 40 min. Y ese esa es mi principal crítica. Me parece que la presión de tiempo en esta prueba es, vista desde aquí, enorme. Son 18 preguntas, varias de ellas auténticos problemas para ese nivel, algunas con varios apartados, y el tiempo es menos de 6 minutos por pregunta …

Sobre la diferencia de nivel con una prueba como esta de Cataluña, o ésta del INEE, mejor no hablar …

Aparte de la presencia de la geometría deductiva, de la que ya he hablado, un detalle que me parece muy interesante es la profundidad con la que tratan la aritmética, con problemas como el 15. Aquí son inimaginables antes de llegar al álgebra, y creo que es un error. Como ya he comentado alguna vez, me parece que tratar problemas como estos sin herramientas algebraicas es muy importante para profundizar en la comprensión de la aritmética, y para desarrollar estrategias de resolución de problemas.  La herramienta que aquí echamos de menos para resolver estos problemas es su famoso modelo de barras. Me parece que estas representaciones con barras de cantidades desconocidas son una buena estrategia para pasar después a representarlas con la x del álgebra, y para ayudar a entender que esa famosa x tiene un significado detrás.

Una prueba final de primaria de Singapur

El objetivo de esta entrada no es iniciar un debate sobre las pruebas externas, sino enseñar un ejemplo que he conseguido hace poco de una prueba final de Primaria de Singapur para mostrar qué matemáticas (y con qué nivel de profundidad) hacen en esa etapa educativa. Empecemos con la prueba, al final algunos breves comentarios.

Hoy voy a mostrar la primera parte de la prueba. Son 15 preguntas tipo test y otras 15 preguntas de respuesta corta. Espero que la calidad de las imágenes sea suficiente.

  1. Redondea 31 804 al millar más cercano.
    (a) 30 000       (b) 31 000     (c) 31 900     (d) 32 000
  2. La figura tiene 6 ángulos. ¿Cuántos son mayores que un ángulo recto?parte1-p2
  3. En la figura PQ y RS son rectas. ¿Cuál de las afirmaciones es cierta?parte1-p3
  4. Calcula el valor de 9g-4+2g si g=6.
    (a) 18     (b) 38     (c) 46     (d) 62
  5. Un ortoedro de altura 10 cm tiene una base cuadrada de lado 3 cm. ¿Cuál es su volumen?
  6. parte1-p5¿Cuál dirías que es el peso total aproximado de 8 monedas de 1 euro?
    parte1-p6
  7. ¿Cuál de los siguientes es el desarrollo de un cubo? (aquí, una pequeña imagen de un cubo)
    parte1-p7
  8. Tai estuvo en el colegio desde las 7 am hasta las 4 pm. ¿Cuántas horas estuvo en el colegio?
    (a) 7     (b) 9     (c) 10     (d) 11
  9. La figura muestra la posición de una bandera en el campo ABCD. ¿Qué vértice del campo está al sureste de la bandera?
    parte1-p9
    Usa esta información para las preguntas 10 y 11. El diagrama muestra los diferentes tipos de bocadillos en un mostrador. 1/5 de los bocadillos son de atún y ¼ de los bocadillos son de queso o de huevo. Había 3 veces más bocadillos de queso que de huevo.
    parte1-p10
  10. ¿Qué fracción de los bocadillos son de pollo?
    (a)  \frac{1}{2}     (b)  \frac{3}{4}     (c)  \frac{9}{20}     (d)  \frac{11}{20}
  11. ¿Qué fracción de los bocadillos son de huevo?
    (a)  \frac{1}{12}     (b)  \frac{1}{16}     (c)  \frac{1}{3}     (d)  \frac{1}{4}
  12. Ordena estas distancias de menor a mayor:
    parte1-p12
  13. La figura 1 es un trapecio de perímetro 36 cm. La figura 2 está formada por 4 de esos trapecios. El perímetro de la figura 2 es 96 cm.
    parte1-p13¿Cuánto mide el lado AB del trapecio?
    (a) 15 cm     (b) 12 cm     (c) 3 cm     (d) 6 cm
  14. Al dividir un número entre 30 el resto es 8. ¿Cuánto hay que sumarle al número para que sea múltiplo de 6?
    (a) 6       (b) 2       (c) 5        (d) 4
  15. Ling y Juni hicieron tarjetas durante dos días. El sábado Ling hizo 19 tarjetas más que Juni. El domingo, Ling hizo 20 tarjetas, y Juni hizo 15. Al acabar los dos días, Ling hizo 3/5 del total de las arjetas. ¿Cuántas tarjetas hizo Juni?
    (a) 24       (b) 26       (c) 48        (d) 78
  16. Calcula 8020 \div 5.
  17. Calcula la media de 9 y 14.
  18. En la figura ABC es una línea recta. Calcula \angle k.
    parte1-p18
  19. La figura está formada por 3 cuadrados. Uno de los cuadrados está dividido en 4 triángulos iguales. ¿Qué fracción de la figura está sombreada?
    parte1-p19Usa la siguiente figura para las preguntas 20 y 21. La figura muestra un mapa con 5 calles.
    parte1-p20
  20. Nombra dos calles que sean paralelas.
  21. Nombra dos calles que sean perpendiculares.
  22. ¿Cuál será el precio del reloj después de añadirle el 7% de IVA?
    parte1-p22
  23. ¿Cuánta agua (en ml) hay en el vaso?
    parte1-p23
    Usa la siguiente figura para las preguntas 24 y 25. Hemos dibujado un semicírculo.
    parte1-p24
  24. Mide y escribe la longitud del radio.
  25. Elige un punto C dentro del recuadro y dibuja dos segmentos AC y BC para formar un triángulo ABC tal que |AB| = |AC|.
  26. El siguiente diagrama de barras muestra el número de hijos en las familias de un bloque de apartamentos. 1/3 de las familias tienen 1 hijo. Dibuja la barra que muestra esas familias en el diagrama.
    parte1-p26
  27. La siguiente tabla muestra el precio de unos trabajos de limpieza.
    3 primeras horas: 80 €
    Cada hora adicional: 20 €.
    La Sra Menon pagó a la empresa 200 €. ¿Cuántas horas duró la limpieza?
  28. Sam dibujó estas figuras. A es una circunferencia, B un triángulo equilátero, C un  paralelogramo, D un rombo y E un trapecio.
    parte1-p28
    Nombra las figuras que tienen al menos una recta de simetría.
  29. Una bolsa contiene pajitas de tres colores distintos. 1/4 de las pajitas son azules. La razón del número de pajitas rojas y el número de verdes es 2:3. ¿Cuál es la razón del número de pajitas azules y el número de pajitas verdes?
  30. Meng quiere construir una escalera  con cubos de 1 cm.
    parte1-p30Las figuras muestran la construcción de 2 cm, luego 3 cm y luego 4 cm.Si continúa de esta forma, ¿cuál será la altura de la escalera formada por 140 cubos?

Como decía al principio, esto es solo la primera parte. La prueba tiene una segunda parte, que dura el doble, que se puede describir como “de problemas” y en la que se puede usar calculadora. En esta imagen está la descripción global de la prueba. instrucciones

Espero publicar pronto una segunda parte de esta entrada con esos problemas. De momento, aquí está el pdf para los lectores impacientes.

Unos primeros comentarios:

  1. Reitero que no se trata de debatir sobre la idea de las pruebas externas, ni mucho menos sobre la conveniencia de seleccionar estudiantes al final de primaria, como hacen en Singapur.
  2. Sobre el fondo de la prueba, me gusta lo que transmite de cuáles son las matemáticas importantes en primaria. Está claro que el nivel en varios temas es completamente distinto al que vemos por aquí. La gran pregunta es hasta dónde se puede llegar usando mejor todo el tiempo que en España usamos para hacer largas divisiones (y otros temas, importantes, pero que en Singapur consideran poco apropiados para Primaria, como divisibilidad -mcm y mcd-, y potencias).
  3. La extensión de la prueba también es sorprendente, desde luego. 30 preguntas en 50 minutos es correr mucho. Es verdad que hay preguntas cortas, pero hay otras que requieren reflexión. Supongo que esto refleja lo que seguro que nos parece a la mayoría excesiva inclinación por los exámenes que tienen allí.
  4. Pero yendo al fondo, creo que la prueba es equilibrada y bien diseñada. Dejando al margen los temas ya mencionados, creo que dedicar tiempo a preparar una prueba como esta (el famoso “teach to the test”) no es tan malo.

¿Campaña por un nuevo currículo de matemáticas?

Este año también me fui de vacaciones con la intención de volver con ideas para promover algún tipo de acción pidiendo una revisión de los currículos de matemáticas. Y supongo que, como en años anteriores, la intención se habría quedado en eso, sepultada por el resto de tareas que uno se encuentra de cara al comienzo de curso, de no haber sido por este tuit de hace unos días:

La imagen del tuit es la transparencia 54 del powerpoint de este informe, que me parece interesante en general.

Creo que la gran mayoría de los profesores estamos de acuerdo en que los currículos son demasiado extensos. De hecho, este problema ha empeorado con la LOMCE. Si los informes de organizaciones a las que se recurre tan a menudo cuando se habla de competencia matemática coinciden en que es mejor elegir menos contenidos, para poder tratarlos en profundidad, ¿no debería este tema llegar al debate social? Seguramente las asociaciones de profesores podrían ser la opción natural, pero mis (escasos) intentos en el pasado reciente han tenido resultado cero. Creo que ha llegado el momento de intentar sacar partido de las nuevas tecnologías, y ensayar la participación directa. El objetivo de esta entrada es (aparte de tratar de forzarme a dar el paso) pedir opinión a los lectores, y recabar ideas. ¿Conocéis alguna alternativa que pudiera ser más adecuada que Change.org?