Prueba final de primaria de Singapur (II)

Aquí está la segunda parte:

  1. Sara compró 1,2 kg de uvas. ¿Cuánto le costaron?parte2-p1
  2. María pagó 945 € por una mesa y 4 sillas. El precio de cada silla era \frac{2}{7} del precio de la mesa. ¿Cuánto pagó María por la mesa?
  3. Rosa compró 150 naranjas y 100 manzanas para sus vecinos. Repartió las naranjas por igual y le sobraron 17 naranjas. También repartió por igual las manzanas, y le sobraron 5 manzanas. ¿Cuántos vecinos tiene Rosa?
  4. En la figura, ABCD es un cuadrado, EBFG es un rectángulo y \angle EBC = 252^{\circ}. Calcula \angle ABFparte2-p4
  5. Un jugador dispone de cuatro intentos en la primera ronda de una competición. La tabla muestra la puntuación que obtiene Pablo en los tres primeros intentos.
    parte2-p5Pablo se clasifica para la siguiente ronda si la puntuación media de tres de sus cuatro intentos es al menos 25. ¿Qué puntuación debe obtener Pablo en su cuarto intento para clasificarse?(En el resto de problemas se pide explícitamente que se muestre el razonamiento)
  6. En la figura, CDEF es un paralelogramo. AFC y BFE son líneas rectas y |BA|=|BC|. \angle ABF = 30^{\circ}\angle DEF = 54^{\circ}.
    (a) Calcula \angle EFC.
    (b) Calcula \angle FBC.parte2-p6
  7. Al principio Ben tenía 90 € y Sandra tenía 48 €. Cada uno compró una camisa del mismo precio. La cantidad de dinero que le quedó a Ben y a Sandra está en la razón 4 : 1. ¿Cuánto les costó cada camisa?
  8. Luis tiene un trozo de cuerda de longitud 13 w cm. Con una parte de la cuerda construye un triángulo cuyos lados miden w cm, 3 w cm y 20 cm.
    a) Expresa la longitud del resto de la cuerda en términos de w, de la forma más sencilla posible.
    b) Luis usó el resto de la cuerda para construir un rectángulo de 2 w cm de largo.  Si w = 6, ¿cuál es la anchura del rectángulo?
  9. En un concierto el 55 % de las entradas se vendieron al precio inicial y el 40% de las entradas se vendieron a mitad de precio. Sobraron 20 entradas, que se regalaron. En total, se recaudaron 7200 €. ¿Cuál fue el precio de venta inicial de las entradas?
  10. Una tienda ofrecía 80 impresoras con un descuento del 25% durante una semana de rebajas. El gráfico muestra la cantidad de impresoras que quedaban sin vender al final de cada día.parte2-p10a) ¿Qué día se vendieron más impresoras?
    b) ¿Qué porcentaje de las 80 impresoras se vendieron durante los tres primeros días de rebajas?
    c) Durante las rebajas, el precio de venta rebajado de cada impresora fue 120 €. Cuando terminaron las rebajas, el resto de las impresoras se vendieron al precio anterior, sin descuento. ¿Cuál fue la cantidad total del dinero obtenida de la venta de las 80 impresoras?
  11.  En un colegio, el 70% de los miembros de la orquesta y el 60% de los miembros del coro son niñas. La orquesta y el coro tienen el mismo número de niños. La orquesta tiene 20 niñas más que el coro. ¿Cuántos miembros tiene la orquesta?
  12. A las 11:50 Carla empezó a montar en bicicleta y se movía a 25 km/h. Fue desde su casa al parque, que estaba a 10 km. Estuvo en el parque 1 h 50 min.
    a) ¿A qué hora se fue del parque?
    b) Cuando se fue del parque, volvió a casa por el mismo camino y tardó 40 minutos. ¿Cuál fue la velocidad media de su viaje de regreso, , en km/h?
  13. La figura muestra un triángulo rectángulo.
    parte2-p13a) Calcula el área del triángulo.
    b) Daniel quiere cortar un triángulo como el de la figura de una pieza rectangular de cartón de 60 cm de largo y 100 cm de ancho. ¿Cuántos triángulos podrá cortar, como máximo?
  14. La figura muestra un camino de 2 m de ancho en un jardín rectangular de 28 m de largo. El borde del camino está formado por cuadrantes de circunferencia con centro W, semicircunferencias con centro en Z y líneas rectas. Sabemos que |WX|=|YZ|.

    a) ¿Cuál es la anchura del rectángulo del jardín?

    b) Calcula el área del camino. Toma \pi = 3.14.
    parte2-p14

  15. Yolanda rellenó dos tipos de botellas, grandes y pequeñas, con la bebida que preparó. Llenó 3 botellas grandes y 5 botellas pequeñas con 7.2 l de bebida.
    parte2-p15Con el refresco que le sobraba le faltaban 0.5 l para rellenar otra botella grande, pero sí pudo rellenar una botella pequeña, tras lo que le sobraron 0.3 l de bebida.

    a) ¿Cuál es la diferencia entre la capacidad de las botellas grandes y las botellas pequeñas?

    b) ¿Cuántos litros de refresco preparó Yolanda?

  16. Paula y Jaime compraron macetas que tenían los precios que se muestran en la figura.
    parte2-p16a) Paula compró el mismo número de macetas grandes que de macetas pequeñas, y se gastó 175 $ más en las macetas grandes. ¿Cuántas macetas compró en total?

    b) Jaime se gastó la misma cantidad de dinero en macetas grandes que en macetas pequeñas. ¿Qué fracción de las macetas que compró eran grandes?

  17. Ana, Bea y Coral son tres amigas que tienen el mismo número de monedas. Ana y Bea tienen cada una combinación de monedas de 50 céntimos y monedas de 10 céntimos. Ana tenía 9 monedas de 10 céntimos y Bea tenía 15 monedas de 10 céntimos. Coral tenía solo monedas de 50 céntimos.

    a) ¿Qué amiga tenía más dinero y qué amiga tenía menos dinero?

    b) ¿Cuál es la diferencia en valor total de las monedas que tienen Ana y Bea?

    c) Bea usó todas sus monedas de 50 céntimos para comprar comida. Después de eso tenía 10 € menos que Carla. ¿Cuántas monedas de 50 céntimos tenía Carla?

  18. Isabel usa palillos para hacer figuras que siguen un patrón. Las cuatro primeras se muestran a continuación.
    parte2-p18aa) En la tabla se muestra el número de palillos necesarios para hacer cada figura. Completa la tabla para la figura 5 y la figura 6.
    parte2-p18bb) ¿Cuál es la diferencia en el número de palillos necesarios para hacer la figura 9 y la figura 11?

    c) ¿Cuántos palillos necesitaría para hacer la figura 30?

Desde luego, da bastante que pensar … Recuerdo que el tiempo para esta parte es 1 h 40 min. Y ese esa es mi principal crítica. Me parece que la presión de tiempo en esta prueba es, vista desde aquí, enorme. Son 18 preguntas, varias de ellas auténticos problemas para ese nivel, algunas con varios apartados, y el tiempo es menos de 6 minutos por pregunta …

Sobre la diferencia de nivel con una prueba como esta de Cataluña, o ésta del INEE, mejor no hablar …

Aparte de la presencia de la geometría deductiva, de la que ya he hablado, un detalle que me parece muy interesante es la profundidad con la que tratan la aritmética, con problemas como el 15. Aquí son inimaginables antes de llegar al álgebra, y creo que es un error. Como ya he comentado alguna vez, me parece que tratar problemas como estos sin herramientas algebraicas es muy importante para profundizar en la comprensión de la aritmética, y para desarrollar estrategias de resolución de problemas.  La herramienta que aquí echamos de menos para resolver estos problemas es su famoso modelo de barras. Me parece que estas representaciones con barras de cantidades desconocidas son una buena estrategia para pasar después a representarlas con la x del álgebra, y para ayudar a entender que esa famosa x tiene un significado detrás.

Anuncios

Una prueba final de primaria de Singapur

El objetivo de esta entrada no es iniciar un debate sobre las pruebas externas, sino enseñar un ejemplo que he conseguido hace poco de una prueba final de Primaria de Singapur para mostrar qué matemáticas (y con qué nivel de profundidad) hacen en esa etapa educativa. Empecemos con la prueba, al final algunos breves comentarios.

Hoy voy a mostrar la primera parte de la prueba. Son 15 preguntas tipo test y otras 15 preguntas de respuesta corta. Espero que la calidad de las imágenes sea suficiente.

  1. Redondea 31 804 al millar más cercano.
    (a) 30 000       (b) 31 000     (c) 31 900     (d) 32 000
  2. La figura tiene 6 ángulos. ¿Cuántos son mayores que un ángulo recto?parte1-p2
  3. En la figura PQ y RS son rectas. ¿Cuál de las afirmaciones es cierta?
  4. parte1-p3Calcula el valor de 2g-4+2g si g=6.
    (a) 18     (b) 38     (c) 46     (d) 62
  5. Un ortoedro de altura 10 cm tiene una base cuadrada de lado 3 cm. ¿Cuál es su volumen?
  6. parte1-p5¿Cuál dirías que es el peso total aproximado de 8 monedas de 1 euro?
    parte1-p6
  7. ¿Cuál de los siguientes es el desarrollo de un cubo? (aquí, una pequeña imagen de un cubo)
    parte1-p7
  8. Tai estuvo en el colegio desde las 7 am hasta las 4 pm. ¿Cuántas horas estuvo en el colegio?
    (a) 7     (b) 9     (c) 10     (d) 11
  9. La figura muestra la posición de una bandera en el campo ABCD. ¿Qué vértice del campo está al sureste de la bandera?
    parte1-p9
    Usa esta información para las preguntas 10 y 11. El diagrama muestra los diferentes tipos de bocadillos en un mostrador. 1/5 de los bocadillos son de atún y ¼ de los bocadillos son de queso o de huevo. Había 3 veces más bocadillos de queso que de huevo.
    parte1-p10
  10. ¿Qué fracción de los bocadillos son de pollo?
    (a)  \frac{1}{2}     (b)  \frac{3}{4}     (c)  \frac{9}{20}     (d)  \frac{11}{20}
  11. ¿Qué fracción de los bocadillos son de huevo?
    (a)  \frac{1}{12}     (b)  \frac{1}{16}     (c)  \frac{1}{3}     (d)  \frac{1}{4}
  12. Ordena estas distancias de menor a mayor:
    parte1-p12
  13. La figura 1 es un trapecio de perímetro 36 cm. La figura 2 está formada por 4 de esos trapecios. El perímetro de la figura 2 es 96 cm.
    parte1-p13¿Cuánto mide el lado AB del trapecio?
    (a) 15 cm     (b) 12 cm     (c) 3 cm     (d) 6 cm
  14. Al dividir un número entre 30 el resto es 8. ¿Cuánto hay que sumarle al número para que sea múltiplo de 6?
    (a) 6       (b) 2       (c) 5        (d) 4
  15. Ling y Juni hicieron tarjetas durante dos días. El sábado Ling hizo 19 tarjetas más que Juni. El domingo, Ling hizo 20 tarjetas, y Juni hizo 15. Al acabar los dos días, Ling hizo 3/5 del total de las arjetas. ¿Cuántas tarjetas hizo Juni?
    (a) 24       (b) 26       (c) 48        (d) 78
  16. Calcula 8020 \div 5.
  17. Calcula la media de 9 y 14.
  18. En la figura ABC es una línea recta. Calcula \angle k.
    parte1-p18
  19. La figura está formada por 3 cuadrados. Uno de los cuadrados está dividido en 4 triángulos iguales. ¿Qué fracción de la figura está sombreada?
    parte1-p19Usa la siguiente figura para las preguntas 20 y 21. La figura muestra un mapa con 5 calles.
    parte1-p20
  20. Nombra dos calles que sean paralelas.
  21. Nombra dos calles que sean perpendiculares.
  22. ¿Cuál será el precio del reloj después de añadirle el 7% de IVA?
    parte1-p22
  23. ¿Cuánta agua (en ml) hay en el vaso?
    parte1-p23
    Usa la siguiente figura para las preguntas 24 y 25. Hemos dibujado un semicírculo.
    parte1-p24
  24. Mide y escribe la longitud del radio.
  25. Elige un punto C dentro del recuadro y dibuja dos segmentos AC y BC para formar un triángulo ABC tal que |AB| = |AC|.
  26. El siguiente diagrama de barras muestra el número de hijos en las familias de un bloque de apartamentos. 1/3 de las familias tienen 1 hijo. Dibuja la barra que muestra esas familias en el diagrama.
    parte1-p26
  27. La siguiente tabla muestra el precio de unos trabajos de limpieza.
    3 primeras horas: 80 €
    Cada hora adicional: 20 €.
    La Sra Menon pagó a la empresa 200 €. ¿Cuántas horas duró la limpieza?
  28. Sam dibujó estas figuras. A es una circunferencia, B un triángulo equilátero, C un  paralelogramo, D un rombo y E un trapecio.
    parte1-p28
    Nombra las figuras que tienen al menos una recta de simetría.
  29. Una bolsa contiene pajitas de tres colores distintos. 1/4 de las pajitas son azules. La razón del número de pajitas rojas y el número de verdes es 2:3. ¿Cuál es la razón del número de pajitas azules y el número de pajitas verdes?
  30. Meng quiere construir una escalera  con cubos de 1 cm.
    parte1-p30Las figuras muestran la construcción de 2 cm, luego 3 cm y luego 4 cm.Si continúa de esta forma, ¿cuál será la altura de la escalera formada por 140 cubos?

Como decía al principio, esto es solo la primera parte. La prueba tiene una segunda parte, que dura el doble, que se puede describir como “de problemas” y en la que se puede usar calculadora. En esta imagen está la descripción global de la prueba. instrucciones

Espero publicar pronto una segunda parte de esta entrada con esos problemas. De momento, aquí está el pdf para los lectores impacientes.

Unos primeros comentarios:

  1. Reitero que no se trata de debatir sobre la idea de las pruebas externas, ni mucho menos sobre la conveniencia de seleccionar estudiantes al final de primaria, como hacen en Singapur.
  2. Sobre el fondo de la prueba, me gusta lo que transmite de cuáles son las matemáticas importantes en primaria. Está claro que el nivel en varios temas es completamente distinto al que vemos por aquí. La gran pregunta es hasta dónde se puede llegar usando mejor todo el tiempo que en España usamos para hacer largas divisiones (y otros temas, importantes, pero que en Singapur consideran poco apropiados para Primaria, como divisibilidad -mcm y mcd-, y potencias).
  3. La extensión de la prueba también es sorprendente, desde luego. 30 preguntas en 50 minutos es correr mucho. Es verdad que hay preguntas cortas, pero hay otras que requieren reflexión. Supongo que esto refleja lo que seguro que nos parece a la mayoría excesiva inclinación por los exámenes que tienen allí.
  4. Pero yendo al fondo, creo que la prueba es equilibrada y bien diseñada. Dejando al margen los temas ya mencionados, creo que dedicar tiempo a preparar una prueba como esta (el famoso “teach to the test”) no es tan malo.

¿Campaña por un nuevo currículo de matemáticas?

Este año también me fui de vacaciones con la intención de volver con ideas para promover algún tipo de acción pidiendo una revisión de los currículos de matemáticas. Y supongo que, como en años anteriores, la intención se habría quedado en eso, sepultada por el resto de tareas que uno se encuentra de cara al comienzo de curso, de no haber sido por este tuit de hace unos días:

La imagen del tuit es la transparencia 54 del powerpoint de este informe, que me parece interesante en general.

Creo que la gran mayoría de los profesores estamos de acuerdo en que los currículos son demasiado extensos. De hecho, este problema ha empeorado con la LOMCE. Si los informes de organizaciones a las que se recurre tan a menudo cuando se habla de competencia matemática coinciden en que es mejor elegir menos contenidos, para poder tratarlos en profundidad, ¿no debería este tema llegar al debate social? Seguramente las asociaciones de profesores podrían ser la opción natural, pero mis (escasos) intentos en el pasado reciente han tenido resultado cero. Creo que ha llegado el momento de intentar sacar partido de las nuevas tecnologías, y ensayar la participación directa. El objetivo de esta entrada es (aparte de tratar de forzarme a dar el paso) pedir opinión a los lectores, y recabar ideas. ¿Conocéis alguna alternativa que pudiera ser más adecuada que Change.org?

Shanghai-Singapur

Tenía pensado cerrar el curso con una entrada sobre la Escuela Miguel de Guzmán, pero este tweet se ha cruzado en mis planes.

Lo único que había visto hasta ahora de Shanghai era sus excelentes resultados en las pruebas de siempre. No parece que sea sencillo conseguir información. No he encontrado su currículo en inglés, y los textos que usan allí tampoco están en inglés. Parece que este tema ha surgido por el proyecto de implantar estas metodologías en colegios (de primaria) de Gran Bretaña. Aquí  hay algo de información sobre Shanghai, y algunos materiales de muestra (de los primeros cursos de primaria).

En este otro enlace de Maths no Problem se puede leer una comparativa sobre Singapur y Shanghai. Creo que debo avisar de que es una comparativa interesada: Maths no Problem es la editorial británica que empezó a trabajar con Marshall  Cavendish, la editorial más importante de Singapur. Recientemente Marshall Cavendish se ha aliado con Oxford University Press (aquí) y creo que Maths no Problem está trabajando con otra editorial de Singapur. En cualquier caso (y aunque mi opinión también puede estar sesgada, desde luego), creo que tienen bastante razón en lo que dicen. La fortaleza esencial de Shanghai puede ser la excelente preparación de su profesorado, mientras que la metodología de Singapur puede depender menos de la excelencia del docente (eso no quiere decir que lo ideal no sea tener buenos docentes, claro, en este espacio no creo que haya que hablar de una función de varias variables).

Lo que sí es cierto sobre Singapur, y esto lo he repetido muchas veces en las últimas semanas, presentando los libros de Polygon Education en los colegios de la zona de Madrid, es que la metodología de Singapur se hizo famosa, a nivel internacional, por su éxito en el movimiento homeschooling de EEUU. ¿La razón? Creo que sencilla: los padres descubrieron que “esas matemáticas” sí las entendían. Y también es cierto que en Singapur eligieron la metodología teniendo bien presente que sus docentes de hace 30 años tenían una formación más bien tirando a básica. Las cosas han cambiado, desde luego (por ejemplo, los profes de Singapur tienen 100 horas de formación continua obligatoria al año. Vamos, 6 veces más que aquí en cantidad. Y apuesto a que en calidad también nos aventajan) pero creo que algo de esa idea de “facilidad de presentación” todavía subsiste.

Termino con una especulación: el lector atento se puede haber dado cuenta de que detrás de los materiales de Shanghai que enlacé arriba está Collins, otra de las grandes editoriales británicas. Es posible que la razón de que aparezca Shanghai sea simplemente que es la forma que Collins ha encontrado de unirse al movimiento de renovación en Gran Bretaña, porque allí el gobierno ha puesto mucho dinero en este tema.

 

El algoritmo de la división: España-Singapur

A raíz de esta entrada, donde enlazaba este vídeo en el que un profesor de Singapur hablaba sobre los errores que se cometían en la enseñanza de las matemáticas en Singapur hace 40 años, algunos lectores preguntaron sobre qué habían hecho allí para corregir esos errores. Lo que quiero mostrar hoy es un ejemplo del tipo de cálculos que hacen ahora en primaria, comparando su enfoque del algoritmo de la división con lo que se hace en nuestras aulas.

Esta imagen está sacada de un libro de 4º de Primaria de Marshall-Cavendish.

Singapur-4-division

La organización del algoritmo es la más común en el mundo anglosajón, pero creo que es fácil de ver. El divisor está a la izquierda (con el paréntesis a su derecha), el cociente se pone arriba, y los restos parciales igual que en nuestro sistema. Estas son las primeras divisiones (en el sentido de aplicación del algoritmo tradicional) y me gusta el detalle de los cuadrados, que ayudan a que el alumno no se pierda. Pero la diferencia fundamental con nuestro sistema es que son las primeras que hacen … ¡y las últimas! No hay en este curso ni en los siguientes divisiones más complicadas, ni divisores de dos o más cifras.

Este otro ejemplo está tomado de uno de nuestros textos de 3º de Primaria. Es también el comienzo del tratamiento del algoritmo (la 2ª página), pero tras un ejemplo donde aparecen las restas explícitamente, ya se empeñan en decir que “en la práctica no se escriben las restas”.

division-españa

Quiero insistir en este punto: será, en todo caso, en la práctica española. Lo más extendido a nivel internacional es escribir las restas completas. De hecho, sigo buscando (sin éxito) información sobre cuándo y por qué decidimos tomar este camino, que creo que está relacionado con nuestra también peculiar forma de restar. Para poder hacer las restas de la división mentalmente, hace falta gestionar las llevadas de la resta en el sustraendo, como se hace en España, y no en el minuendo, lo generalizado en otros países.

Deberíamos estar debatiendo sobre el algoritmo tradicional y, en particular, sobre la conveniencia de seguir haciendo divisiones con divisores de dos y tres cifras, como sigue diciendo el currículo de la LOMCE. Pero, al menos, mientras llegamos a eso deberíamos optar por que los alumnos escribieran la resta explícitamente, ya que esto facilita bastante la comprensión del algoritmo (aparte de ser lo que harán después, si llegan a dividir polinomios). El argumento de que así se favorece el cálculo mental me parece falaz: el mayor interés del cálculo mental es que favorece la comprensión; no tiene sentido usarlo justo aquí, cuando su papel es “ayudar a no entender”.

Suena familiar, ¿verdad?

Una minientrada, para recomendar encarecidamente la visión de este vídeo (5 minutos). En él se habla de lo que hacían mal en Singapur enseñando matemáticas hace 40 años. ¿No resulta inquietantemente familiar?

(Quiero dar las gracias a David Ayerra, del colegio Irabia-Izaga, de Pamplona, que no sólo me ha dado a conocer el vídeo sino que lo ha subtitulado).

 

Menos puede ser mas

Hace unas semanas recibí los textos de 3º y 4º de Secundaria de la serie “Mathematics matters”, de Marshall-Cavendish, y aunque no he tenido tiempo de estudiarlos con detalle el primer vistazo resulta bastante impactante. No tengo claro si se trata de un enfoque alternativo a la serie “New mathematics counts”, o si se trata de una evolución, pero el caso es que dan un paso mas en la “simplificación” de muchas técnicas que ya era llamativa en “New mathematics counts”. Lo mejor para entender de qué estoy hablando es desde luego ver algún ejemplo, así que aquí está el capítulo del libro de 3º dedicado a las potencias (29 Mb). A la hora de revisarlo, es importante tener en cuenta que es el único capítulo de la secundaria que dedican a las potencias. Por supuesto que en ejercicios posteriores aparecerán cálculos con potencias, y de esta forma se repasan, pero no se vuelven a tratar de forma sistemática.

Aún mas llamativo que las concisas 34 páginas que le dedican al tema es lo “descargado” de las páginas de estos textos de Marshall-Cavendish. Acostumbrado a las abigarradas vistas de muchos de nuestros libros, que parecen seguir la filosofía de “cuanto mas, mejor” o “mas vale que sobre que no que falte”, la sencillez de la exposición me resulta impactante. Por supuesto, la brevedad no impide que los hechos básicos, como que a^0 = 1, sean justificados (cuando pido a mis alumnos del máster de profesorado que justifiquen esa relación, la respuesta es casi siempre “porque es así”).

Y es que creo que ya tenemos suficientes datos para afirmar que la raíz de nuestro problema no es la escasez de horas de clase ni el trabajo de los alumnos; los datos de la imagen me parecen suficientemente elocuentes. Lo que necesitamos urgentemente es un profundo cambio de currículo y de enfoque metodológico.

horas-clase-deberesVía @educaINEE. Fuente: Panorama de la educación. Indicadores OCDE 2014

Mientras las soluciones vayan en esta dirección http://www.europapress.es/galicia/noticia-alumnos-eso-tendran-horas-mas-matematicas-20150324153403.html  (vía @jjcanido) o, cambiando de tercio, en que el estudiante haga otra hoja de divisiones, de ecuaciones logarítmicas, o de derivadas, la situación seguirá sin mejorar.