Dos medios, dos velocidades

Con esa entrada quiero empezar la reflexión sobre el tema que propuso Conrad Wolfram en su presentación Stop teaching calculating, start learning math. El mismo mensaje, en el siempre atractivo formato de las TED talks, aquí. Me parece un tema de gran complejidad, y estoy muy lejos de tener una propuesta completa. Lo que me ha parecido más adecuado es empezar a presentar ejemplos concretos de qué impacto debería tener un buen uso de la capacidad de cálculo de la que estamos rodeados en temas ya presentes en las aulas. De hecho, hay un punto de la TED talk con el que discrepo. Wolfram acaba su presentación diciendo que el cambio en el enfoque de las matemáticas debe ser brusco, pasando sin solución de continuidad del paradigma actual a su propuesta. Dice que, de lo contrario, podríamos caer en el abismo que separa ambos enfoques. La verdad, no tengo claro cuál es ese abismo, ni me parece factible un cambio radical en ningún aspecto de un sistema como el educativo, cuya complejidad fuerza invariablement a que los cambios sean graduales. Sólo conozco un ejemplo de cambio radical en la enseñanza de las matemáticas, la New Math de los 60 en EEUU, que nos llegó como la Matemática Moderna en nuestra EGB de los 70. Creo que poca gente discrepa de la afirmación de que el fracaso fue absoluto.

Mi propuesta es, desde luego, más conservadora que la de Wolfram, pero creo que puede servirme (y espero que servirnos) para avanzar en la reflexión. A estas entradas les asignaré la etiqueta TIC; el término no me gusta, por el uso que se le ha dado, consistente demasiadas veces en hacer con el ordenador lo mismo que se hacía antes sin él. Pero desde luego sirve para el propósito de indexación, y puede ser también una forma de reivindicar el término.

Hoy quiero presentar un problema que leí en  El placer de la x, de Steven Strogatz. En sí mismo, el libro me parece absolutamente recomendable: creo que logra bastante bien eso tan complicado de transmitir ideas matemáticas importantes a lectores sin conocimientos matemáticos. El problema es el siguiente:

Una persona quiere ir desde el punto A de la figura hasta el B. Por encima de la recta r hay nieve, y puede moverse a una velocidad de 0’8 m/seg. Por debajo de la recta, el terreno está despejado y se mueve a una velocidad de 1’5 m/seg. En la figura se muestra una posible trayectoria.

  1. Calcula, en función de x, cuánto tiempo tarda.
  2. Representa la función obtenida con ayuda de un ordenador, y da una estimación del valor de x para el que el tiempo del trayecto es mínimo.

refraccionUn primer valor de este problema es desde luego el de la interdisciplinariedad, y cómo sirve de excusa para explicar que este fenómeno de velocidades distintas es lo que explica la refracción de la luz, y cómo la luz lo único que hace es moverse por el camino más rápido (ninguno de mis alumnos había oído hablar del tema).

Desde el punto de vista puramente matemático, el primer apartado me parece una bonita aplicación del Teorema de Pitágoras, no sencilla pero que sí debería ser accesible a los alumnos de 2º-3º de la ESO. Mis alumnos de magisterio lo resolvieron aceptablemente bien, el Teorema de Pitágoras es una de esas cosas que se estudia con el suficiente detalle. Pero en el segundo apartado, la gran mayoría se quedaron bloqueados. Contaba con ello, por supuesto, nunca se habían enfrentado a algo parecido. Se trataba de la preparación para hablarles unos minutos de las posibilidades que nos ofrecen los programas de representación de funciones. Incluso para los alumnos que habían estudiado el Bachillerato de Ciencias, esta función les resultó extraña («fea», en palabras de alguno). Por supuesto que es la reaccion normal: es una función muy distinta a las que habían visto hasta ese momento, y muy distinta a las que se habían encontrado durante el excesivo tiempo que se dedica en bachillerato a la representación de funciones (sí, ya lo sé, obligado por la selectividad).

La observación que me parece más importante, en relación con la propuesta de Wolfram, es que la opción de estudiar la representación de funciones prescindiendo de los ordenadores nos obliga a dedicarnos a un tipo de funciones muy especial, casi siempre sin ninguna interpretación relevante, y además invirtiendo una gran cantida de tiempo en ello; representar una función no es sencillo. Dedicaré pronto una entrada completa al tema de representación de funciones, pero termino con mi opinión sobre el tema: creo que deberíamos dedicar tiempo a representar funciones sencillas, de las que se pueden dibujar (al menos de forma aproximada) «a ojo», y después pasar a ver funciones que aparecen en el estudio de los más variados fenómenos. Estas serían, casi invariablemente, excesivamente complicadas para dibujarlas  a mano, pero ¡para eso están los ordenadores! Interpretar la representación de estas funciones, y sus implicaciones en los modelos subyacentes, es una forma mucho más productiva de invertir el siempre escaso tiempo disponible.

Anuncio publicitario

4 pensamientos en “Dos medios, dos velocidades

  1. Lo que planteas al final de la entrada es una de las principales claves por la que las matemáticas han gustado tan poco a tantas generaciones de españoles. No se veía ni aún se ve, en muchos casos, qué aplicación e importancia práctica tienen las matemáticas en muchísimos aspectos del entorno que nos rodea. De ahí el desapego del alumnado respecto a una materia tan esencial. No le ven la utilidad a los conceptos teóricos ni tampoco a la mayoría de los problemas planteados y ésto, a su vez, genera un rápido olvido de los conceptos aprendidos.

    • Totalmente de acuerdo. La pregunta es cómo salimos de esta situación. Mi percepción es que muchos profesores de a pie compartimos este punto de vista, pero no sé cómo conseguir que se nos escuche. Hago todo lo que puedo en la formación de maestros y profesores de secundaria, pero desde luego hacen falta más palancas. Creo que las asociaciones de profesores de matemáticas deberían jugar un papel importante. Sí, ya sé que la respuesta más frecuente es que las asociaciones están alejadas de las aulas, pero creo que, en lugar de darles la espalda, deberíamos participar y acercarlas a los problemas reales de nuestra educación.

  2. Y hablando de la representación de funciones, podrían introducirse conceptos importantísimos para comprender cualquier medida experimental: nubes de puntos y rectas de regresión. De ahí se podría saltar a obtención de modelos matemáticos a partir de datos experimentales. Es un tema complejo para introducir muy pronto, pero ayudaría a que todos seamos capaces de comprender gráficos y extraer conclusiones, algo que echo en falta en nuestra sociedad.

    • Totalmente de acuerdo. Hay tantos conceptos e ideas importantes que se podrían introducir con ayuda de las herramientas de cálculo y representación disponibles, de forma mucho más clara de lo que se hace ahora, que es casi imposible hacer una lista.

Deja una respuesta

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.