El sorteo de la Champions (y II)

Muchas gracias a todos por las aportaciones. Creo que ha habido tres soluciones distintas, y que tiene sentido recapitularlas.

  1. Con probabilidad elemental, fijando un primer equipo español, digamos el A. La probabilidad de que su rival sea español es 2/7. Que el rival de A no sea español tiene probabilidad 5/7, y en ese caso que el rival de B sea el tercer equipo español tiene probabilidad 1/5. Por tanto, la probabilidad de eliminatoria española era \frac{2}{7} + \frac{5}{7} \cdot \frac{1}{5} = \frac{3}{7}.
  2. Directamente con la regla de Laplace, contando casos favorables y posibles. En algún momento hablaremos de la combinatoria, casi desaparecida del currículo. Y cuando se trata, reducida a variaciones, permutaciones y combinaciones, con sus correspondientes fórmulas. A la hora de la verdad, muchas cosas no son nada de eso. Por ejemplo, los posibles emparejamientos entre n equipos.
    Para la primera eliminatoria hay \binom{n}{2} posibilidades, para la segunda \binom{n-2}{2}, etc. Como es mejor ignorar el orden de esos emparejamientos, tras dividir por (\frac{n}{2})! se obtiene la fórmula para el número de emparejamientos entre n equipos: \frac{\binom{n}{2} \binom{n-2}{2} \cdots \binom{2}{2}}{(\frac{n}{2})!}. Tras simplificar queda (como observó ricardito) que el número de emparejamientos entre n equipos es el producto de los impares menores que n. En el caso de los 8 equipos, 7 \times 5 \times 3.
    ¿En cuántos de ellos hay eliminatoria española? Hay 3 posibles emparejamientos entre equipos españoles, y para cada uno de ellos hay que emparejar los restantes 6 equipos. Por tanto, hay 3 \times 5 \times 3 emparejamientos con eliminatoria española.
  3. Para terminar, mi modelo de las bolas rojas. Consideramos 8 posiciones, distribuidas en 4 cajas. La posición 1 y 2 en la primera caja, la 3 y la 4 en la segunda, etc. Hay \binom{8}{3}=56 formas de colocar 3 bolas en esas 8 posiciones.  Si en una caja hay dos bolas, hay 6 huecos para la bola roja restante. Por tanto, en 4\times 6 de las distribuciones de bolas hay 2 en la misma caja, y la probabilidad es \frac{24}{56} = \frac{3}{7}.
Anuncio publicitario

Deja una respuesta

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.