Cuentas sin sentido

Me había prometido no incluir en este blog ejemplos de lo mal que están algunas cosas. Creo que todos somos conscientes de ello, y prefiero escribir en positivo. Sin embargo, en un mismo día de esta semana he visto dos cosas que me han dejado perplejo, y  creo que son ejemplos perfectos de hasta qué punto estamos rodeados de cuentas sin sentido.

En mi clase de Matemáticas para maestros les propuse el siguiente problema: «Si ahora son las 8 de la tarde, ¿qué hora era hace 2500 horas?». Cerca de la mitad de la clase no sabía cómo hacerlo. Insisto: no tengo queja de su motivación; lo intentaron, pero no sabían hacerlo. Pero lo que más me sorprendió es que cuando expuse la solución, a partir de la igualdad  2500 = 104 \times 24 + 4 aún había una cantidad significativa de alumnos, digamos que alrededor del 10%, que no entendían la solución, y con los que tuve que recurrir a ejemplos más sencillos, como tomar 28 horas, etc. Estoy seguro de que en su formación habían hecho decenas (posiblemente centenares) de divisiones, pero no entendían la idea básica de división.

Ese mismo día, al llegar a casa, mi hija mayor me cuenta que está estudiando los logaritmos. Está en 4º de ESO (para los lectores que no conozcan el sistema educativo español, se trata del 10º curso de la educación obligatoria). La verdad es que hasta ahora no había pensado en los logaritmos (lo pongo en la lista), así que no tengo mucho que decir acerca de cómo creo que se deberían tratar, pero creo que todos hemos escuchado la palabra en boca de gente «de letras» cuando quieren expresar lo esotérico e incomprensible de las matemáticas que estudiaron al final de la educación obligatoria. Mi hija no tenía mayores problemas con el tema, sólo quería enseñarme lo raras que eran algunas cuentas que estaba haciendo. Aquí están escaneadas las dos a las que les daría los primeros premios en el concurso:

Otra cosa que me llamó poderosamente la atención de su cuaderno es que tenía una lista de ¡7! propiedades de los logaritmos. La primera decía: «El logaritmo de la base elevada a una potencia es la potencia». Preferí no seguir leyendo …

Como digo, no tengo una propuesta clara sobre el tema, así que voy a terminar con las dos primeras observaciones que se me ocurren:

  1. Una vez más, la interdisciplinariedad es clave. Es la primera vez que estudian los logaritmos, pero para algunos será la última, y hablar ya en esta ocasión de los decibelios, o el pH, o la escala de Richter para medir la intensidad de los terremotos,  es imprescindible para que el tema tenga algún sentido.
  2. La idea matemática fundamental es, desde luego, que el logaritmo es la inversa de la función exponencial.

A partir de aquí, la observación es la general: ¿qué queremos conseguir cuando les ponemos a hacer cuentas?

Anuncio publicitario