Las fracciones

Las fracciones son sin duda uno de los escollos fundamentales en el aprendizaje de las matemáticas elementales. Desde mi punto de vista, hay dos tipos de razones para ello:

  • la mayor parte del tiempo se dedica a la aritmética, a las cuentas, sin prestar suficiente atención a los conceptos involucrados. Esto hace que los alumnos, en el mejor de los casos, hagan correctamente las cuentas, pero en demasiadas ocasiones no sepan interpretarlas. En otros muchos casos, por supuesto, el no entender el sentido de las operaciones abre la puerta a todo tipo de errores.
  • el concepto de fracción no es sencillo de presentar ni de entender. En particular, una fracción, desde el punto de vista elemental, tiene las tres interpretaciones de la figura:
    1. una parte de un objeto. En la figura (1), están pintados de verde los 3/5 de una barra.
    2. la solución a un problema de reparto: si tenemos 3 chocolatinas y las queremos repartir entre cinco niños, por igual, a cada niño le toca 3/5 de chocolatina.
    3. un punto de la recta numérica (es decir, un número racional).

La interpretación (1) es seguramente la más indicada para el primer contacto (en algunos países, este primer contacto se produce ya en el primer ciclo, y en todos los que he visto en el segundo ciclo). Este primer contacto no incluye la aritmética, ni siquiera una introducción. Pero cuando se inicia el estudio más sistemático de las fracciones, en el tercer ciclo de primaria (y en cursos equivalentes en la mayoría de los países que he mirado  – cursos K 5 y 6), es esencial que se entiendan estas tres interpretaciones de una fracción. Si uno se para a pensarlo, la equivalencia de la interpretación (2) con la (1) no es tan evidente para un niño que se enfrenta al problema por primera vez. Creo que la mejor forma de presentarla es la sugerida en la figura: dividimos cada chocolatina en 5 partes iguales, y le damos una a cada niño.

Pero además de entender las tres posibles interpretaciones, se debería elegir una básica, para dar una definición de fracción y para, sobre todo, darle sentido a la aritmética. Desde mi punto de vista, la representación (3) es la más adecuada. Esta podría ser una definición:

Def: La fracción p/q representa el siguiente punto de la recta numérica:  tomamos el intervalo (0,1) y lo dividimos en q partes iguales. Ahora, contamos desde el cero p de esas partes.

De acuerdo: admito que esta opción no pasa la prueba de ser formalmente válida a los ojos de un matemático. Pero creo que este es uno de los puntos clave de lo que empecé a llamar en la entrada anterior Matemáticas para la docencia: el rigor y el formalismo que se extendieron por las matemáticas desde finales del siglo XIX (y que tan buenos resultados ha dado desde muchos puntos de vista) no deberían convertirse en un obstáculo para la enseñanza de las matemáticas básicas. En particular, en enseñanza primaria y secundaria, lo ideal sería encontrar el correcto equilibrio entre rigor – que no rigorismo – y el uso adecuado de los conceptos elementales intuitivos.

Estas son las principales ventajas de tomar la opción (3) como la fundamental para el estudio de las fracciones:

  1. la fracción se ve, desde el primer momento, como «un número más». Nos evitaríamos así el problema que creo que todos hemos visto, del estudiante que, ante la solución 3/5 de un problema, no queda satisfecho, y sólo da el problema como resuelto «de verdad» si escribimos 0’6.
  2. el concepto de fracción equivalente se introduce sin ninguna dificultad. Dos fracciones son equivalentes cuando representan el mismo punto. Llegar a la comprobación algebraica sería un segundo paso, que se trabajaría con ejercicios.
  3. los problemas de comparar fracciones, o estimarlas, o expresarlas como números mixtos, pasan a ser más intuitivos, al poderse visualizar en el mismo entorno que los números ya conocidos.
  4. por último, y más importante, la aritmética de las fracciones se ve, desde el primer momento, como una extensión de la aritmética conocida. De la misma forma que la suma 2+3 se visualiza en la recta numérica yuxtaponiendo los segmentos que representan al 2 y al 3, se le puede plantear al niño el problema de sumar 3/5 y 1/2. Y cuando hablo del «problema» estoy diciendo, por supuesto, que lo propondría sin hablar antes de comunes denominadores, ni nada por el estilo. El niño, con la ayuda de papel cuadriculado – o milimetrado – debería descubrir que el denominador me fija la unidad, y que como ya ha hecho en otros contextos debe sumar cantidades en unidades homogéneas. Si ya se ha entendido antes el concepto de fracción equivalente, el aprendizaje por descubrimiento es aquí perfectamente posible. Por esta vía se puede seguir para la multiplicación y división de fracciones, pero esto será el tema de una próxima entrada, esta ya se ha hecho demasiado larga.

Querría terminar con una aclaración: no pretendo estar inventando nada, este enfoque no es original, pero sí creo que minoritario, y desde luego poco utilizado en España. El libro donde lo he visto mejor contado es

Thomas H. Parker, Scott J. Baldridge. Elementary Mathematics for Teachers. Sefton-Ash Publishing, EE UU, 2004. (Un aviso: acabo de comprobar que sigue sin ser posible comprarlo desde España – tampoco vía Amazon).

Y una petición: si algún lector ya ha usado este enfoque en un aula, o lo hace en el futuro, estaría interesado en recibir información sobre la experiencia.

.

Matemáticas para la docencia

Esto iba a ser la entrada Formación matemática de los futuros maestros (II), pero mientras la pensaba me he dado cuenta de que lo que quería decir aquí se aplica por igual a los futuros profesores de secundaria, de ahí el cambio de nombre.

Cuando se habla de la formación matemática de los futuros docentes, el debate universal gira en torno a si lo más importante son los contenidos, o la formación en metodología/didáctica. En este debate, las ideas que me han parecido más interesantes son las del profesor Hung-Hsi Wu, de la Universidad de Berkeley. Su página web es una excelente fuente de material sobre el tema. En particular,  la presentación The mathematics school teachers should know corresponde a una conferencia que impartió en Lisboa en 2010. El resto de esta entrada la dedicaré a presentar lo que me parecen sus ideas fundamentales. Si el lector prefiere la fuente original, cosa siempre aconsejable, el enlace anterior es mi recomendación.

Según Wu, la formación matemática que reciben los futuros docentes en EEUU es en muchos casos poco adecuada por dos tipos de razones:

  1. los contenidos de los cursos a nivel universitario están demasiado alejados de las matemáticas que tendrán que enseñar. Esta suele ser la situación en el caso de los futuros docentes de enseñanza media.
  2. los contenidos se presentan sin poner atención en algunas de las características fundamentales de las matemáticas: precisión, razonamiento lógico, relación entre áreas y conceptos. Esta suele ser la situación en el caso de los futuros docentes de enseñanza elemental.

Mi impresión es que estos comentarios son casi directamente trasladables a la situación española. Creo que no es casualidad que la situación de los dos países en el informe TEDS-M, del que ya hablé en la entrada anterior sobre este tema, sea similar.

La postura del profesor Wu en el debate contenidos-metodología es clara: los contenidos deben dictar la metodología. No se trata de que la metodología (la didáctica) no sea importánte, pero no tiene sentido trabajar las mejores propuestas metodológicas para presentar, por ejemplo, las fracciones, sin una adecuada comprensión del concepto matemático subyacente. Las fracciones son, de hecho, un ejemplo perfecto del punto central de su argumento. Pensemos por un momento en las alternativas de que dispone un profesor de primaria o secundaria que ha recibido una formación matemática completa, en el sentido «tradicional», para tratar el tema de las fracciones y los números racionales:

  1. una fracción representa una parte de la unidad (trozos de tarta, de pizza, etc).
  2. una fracción es un par ordenado de números enteros (el 2º distinto de cero). Un número racional es un elemento del conjunto cociente obtenido en el conjunto anterior cuando se considera cierta relación de equivalencia.

La opción 1 es la única de la que seguramente dispondrá un profesor de primaria, en tanto que la 2 puede ser parte del conocimiento de un profesor de secundaria que ha cursado estudios de matemáticas. Pero es evidente que la opción 2 no es una alternativa para tratar las fracciones en ningún momento de la enseñanza media. La opción 1 puede ser una alternativa para la primera introducción a las fracciones en primara, pero en cierto momento, que personalmente situaría al final de la primaria o en todo caso al principio de la secundaria, se necesita precisar el concepto de fracción. En particular, para darle un mejor sentido a la aritmética de fracciones.

¿Cuál es entonces la alternativa de Wu para la presentación de las fracciones? Bueno, será el tema de mi próxima entrada, esta ya es demasiado larga. Termino esta entrada diciendo que este tipo de preguntas son centrales en la preparación de los futuros profesores. En EEUU se suele hablar de Mathematical Knoweledge for Teaching, para referirse a este tipo de contenidos, y desde mi punto de vista es el encuentro natural de las visiones desde los contenidos y la didáctica, más tradicionales en nuestro país. Y es el punto de encuentro necesario para lograr una formación más completa de los futuros docentes.

La formación matemática de los futuros maestros (I)

Seguramente hoy voy a meterme en un jardín, pero creo que es un jardín que un blog como este, que tiene como una de sus banderas principales que la solución al problema de la enseñanza de las matemáticas debe empezar por la enseñanza primaria, debe visitar.

Lo que más me llamó la atención cuando entré en este mundo (el de los formadores de profesores), es que estamos muy lejos de una respuesta consensuada a la pregunta: ¿qué formación matemática necesita un futuro profesor de primaria? En los debates que he oído y leído al respecto, todo el mundo está de acuerdo en estos dos aspectos:

  • la formación matemática de los estudiantes que ingresan en las escuelas de magisterio y facultades de educación es, en demasiados casos, muy pobre.
  • el tiempo que le dedican a las matemáticas los planes de estudio vigentes es demasiado escaso.

Desde luego, estoy completamente de acuerdo con estos dos puntos, y creo que cualquier medida que los corrigiera sería positiva, pero también creo que esta situación hace más relevante la pregunta: ¿a qué matemáticas le dedicamos el escaso tiempo disponible? Parece que el grueso del debate gira alrededor del binomio contenidos-metodología (aunque desde luego también es importante precisar qué contenidos y qué metodología). No voy a esquivar ese debate, pero tendrá que esperar unas semanas. Quiero escribir sobre ello con cuidado y el resto de este mes estoy desbordado con mis tareas docentes.

Recientemente se ha publicado el informe de un estudio internacional – el TEDS-M – que es imprescindible en este debate. El objetivo del estudio TEDS-M, que arrancó hace 4 años, era justamente valorar la formación matemática de los futuros profesores. El estudio internacional era tanto para profesores de primaria como de secundaria, aunque España sólo participó en la parte de primaria, supongo que porque en los años en que se desarrolló el  estudio era muy problemático acceder a la población de los futuros profesores de secundaria (el estudio de primaria se hizo sobre los estudiantes del último curso de magisterio; supongo que si el estudio se hubiera hecho en la actualidad, se podría haber recurrido a los estudiantes del máster de formación del profesorado para la secundaria).

Por fin se ha publicado el  informe español sobre el estudio. Es un informe extenso (150 páginas), y creo que es ahora mismo la mejor fuente de información sobre la situación de nuestros futuros profesores de primaria. Voy a terminar esta entrada con algunas de las cosas que más me han llamado la atención.

  • en las páginas 90 y 91 pueden verse algunas de las preguntas propuestas. Se preguntaba tanto por contenidos como por conocimientos didácticos.
  • en la valoración de los programas de los distintos centros que participaron en el estudio (la gran mayoría de los públicos, y algunos privados) se incide en qué porcentaje de una amplia lista de contenidos se cubren. Este me parece un error persistente en los programas españoles. Optamos siempre por la cantidad, en lugar de por la calidad. Si estuviera en mis manos, tomaría la decisión de eliminar la mitad de los contenidos de todos los programas (evidentemente, habría que elegir con cuidado qué mitad preservar). De esta forma, sería posible detenerse en los contenidos más relevantes el tiempo mínimo necesario para que se produzca un auténtico aprendizaje.
  • de entre los 14 países participantes en el estudio, en España es donde el profesorado de las áreas de pedagogía tiene mayor presencia, el 76.1% (pag. 121). Que no haya lugar a equívocos: es evidente que los contenidos pedagógicos son esenciales en magisterio. Sin embargo, se debe encontrar un equilibrio entre los contenidos de pedagogía y el resto. Según el estudio, en España el predominio de los contenidos de pedagogía es mayor que en ningún otro país participante.

Un último comentario por hoy: en este enlace se puede encontrar información sobre el estudio internacional. Una de las cosas que más me ha llamado la atención en él es la gran varieadad de propuestas que existen en el mundo para formar al profesorado de enseñanza preuniversitaria. En estos tiempos, en que la información se mueve tanto y tan deprisa, ¿no debería ser más sencillo averiguar qué sistemas están funcionando mejor?

Cuentas sin sentido

Me había prometido no incluir en este blog ejemplos de lo mal que están algunas cosas. Creo que todos somos conscientes de ello, y prefiero escribir en positivo. Sin embargo, en un mismo día de esta semana he visto dos cosas que me han dejado perplejo, y  creo que son ejemplos perfectos de hasta qué punto estamos rodeados de cuentas sin sentido.

En mi clase de Matemáticas para maestros les propuse el siguiente problema: «Si ahora son las 8 de la tarde, ¿qué hora era hace 2500 horas?». Cerca de la mitad de la clase no sabía cómo hacerlo. Insisto: no tengo queja de su motivación; lo intentaron, pero no sabían hacerlo. Pero lo que más me sorprendió es que cuando expuse la solución, a partir de la igualdad  2500 = 104 \times 24 + 4 aún había una cantidad significativa de alumnos, digamos que alrededor del 10%, que no entendían la solución, y con los que tuve que recurrir a ejemplos más sencillos, como tomar 28 horas, etc. Estoy seguro de que en su formación habían hecho decenas (posiblemente centenares) de divisiones, pero no entendían la idea básica de división.

Ese mismo día, al llegar a casa, mi hija mayor me cuenta que está estudiando los logaritmos. Está en 4º de ESO (para los lectores que no conozcan el sistema educativo español, se trata del 10º curso de la educación obligatoria). La verdad es que hasta ahora no había pensado en los logaritmos (lo pongo en la lista), así que no tengo mucho que decir acerca de cómo creo que se deberían tratar, pero creo que todos hemos escuchado la palabra en boca de gente «de letras» cuando quieren expresar lo esotérico e incomprensible de las matemáticas que estudiaron al final de la educación obligatoria. Mi hija no tenía mayores problemas con el tema, sólo quería enseñarme lo raras que eran algunas cuentas que estaba haciendo. Aquí están escaneadas las dos a las que les daría los primeros premios en el concurso:

Otra cosa que me llamó poderosamente la atención de su cuaderno es que tenía una lista de ¡7! propiedades de los logaritmos. La primera decía: «El logaritmo de la base elevada a una potencia es la potencia». Preferí no seguir leyendo …

Como digo, no tengo una propuesta clara sobre el tema, así que voy a terminar con las dos primeras observaciones que se me ocurren:

  1. Una vez más, la interdisciplinariedad es clave. Es la primera vez que estudian los logaritmos, pero para algunos será la última, y hablar ya en esta ocasión de los decibelios, o el pH, o la escala de Richter para medir la intensidad de los terremotos,  es imprescindible para que el tema tenga algún sentido.
  2. La idea matemática fundamental es, desde luego, que el logaritmo es la inversa de la función exponencial.

A partir de aquí, la observación es la general: ¿qué queremos conseguir cuando les ponemos a hacer cuentas?

Si Euclides levantara la cabeza …

La Geometría es, sin duda, el patito feo de las matemáticas. Su presencia en el curriculum la resumiría así:

  • en el primer  y segundo ciclo de primaria, se presentan las formas y los elementos básicos, y se inician los problemas de medida de magnitudes. No voy a entrar de momento en el análisis más detallado de estas etapas, el objetivo de esta entrada es otro.
  • en el tercer ciclo de primaria se introducen los primeros problemas de áreas y volúmenes (en la gran mayoría de los casos, por supuesto, reduciendo estos a la mera aplicación de fórmulas «mágicas»).
  • en la ESO la situación no mejora, y la geometría sólo aparece de la mano del álgebra o la parte de la trigonometría, supongo que porque es cuando se pueden empezar a hacer algunas cuentas más.
  • en el Bachillerato vive su instante de gloria, a causa de su presencia en las pruebas de acceso a la Universidad. Pero para entonces, claro, cualquier profesor de Bachillerato habrá comprobado los tremendos problemas de visión espacial que tienen la mayoría de los alumnos, muchos de ellos incapaces de visualizar las diferentes posiciones relativas de dos rectas en el espacio. Por tanto, de nuevo casi todo se reduce a memorizar recetas sobre rangos de matrices y similares, para resolver los problemas correspondientes.

Hay dos aspectos de la Geometría cuya ausencia me parece especialmente significativa. El primero son las construcciones con regla y compás. Desde mi punto de vista, están en el corazón de la geometría, y sería desde luego la primera cosa que Euclides echaría de menos. Se suelen tratar en la asignatra de Dibujo más que en la de Matemáticas. Pero claro, cuando se hace una construcción en Dibujo, el ejercicio suele decir cosas como: pincha el compás en A y traza la circunferencia … Es imposible encontrar ningún tipo de razonamiento geométrico. Este fenómeno de trasladar los problemas geométricos que se resuelven con regla y compás a la asignatura de Dibujo me parece un error comparable a trasladar los problemas sobre disoluciones a la asignatura de Tecnología … porque se resuelven con calculadora.

Pero sin duda la gran ausente de nuestros planes de estudio es la geometría deductiva. Los preámbulos de los documentos oficiales subrayan que uno de los principales objetivos de la educación es formar ciudadanos con espíritu crítico, que sepan «pensar por sí mismos», pero luego dejan aparcada la parte de las matemáticas que más podría contribuir al desarrollo del pensamiento lógico y por tanto a la formación de ese espíritu crítico. Creo que, si Euclides levantara la cabeza, tras el primer susto, lo primero que haría sería correr a buscar a su amigo Platón, para ver si entre los dos conseguían que ese papel de la geometría deductiva como entrenador del pensamiento lógico fuera recuperado. ¿No sería todo un bombazo que abrieran una academia en cuya entrada se leyera, como hace más de 2000 años «Que no entre aquí nadie que no sepa Geometría»?

Quiero terminar esta entrada con un pequeño relato de un momento de una de mis clases de esta semana, que se va a quedar como uno de esos momentos especiales de mi carrera docente. Estábamos resolviendo en clase un problema de geometría, en el Grado de Primaria (Magisterio). El problema era el de la figura.

Como suelo hacer, un estudiante había explicado cómo lo había resuelto. Entre paréntesis, es muy llamativo lo que les cuesta a la mayoría verbalizar sus ideas con una mínima corrección.  Pero está claro que esta competencia, que es importante siempre, resulta esencial para futuros maestros. Después de la explicación, quedaban dudas, de forma que volví a explicaro, esta vez yo, con todo detalle. Al terminar, se hizo ese silencio valorativo que surge algunas veces, y que te deja claro que has acertado con ese problema. No era ni muy sencillo, ni demasiado complicado. Algunos alumnos lo habían resuelto, pero otros no, y estos últimos ahora en clase lo habían entendido. Y entonces, en medio de ese silencio, se oye en el fondo de la clase: ¡Qué chulada! No se trataba de un alumno brillante, sino de uno «normal». Su tono, de sorpresa, con notas de admiración, me dejó inmediatamente claras dos cosas. La primera: ese alumno había pasado por nuestro sistema educativo sin haber sido expuesto en ningún momento a un auténtico razonamiento matemático, por sencillo que fuera; la segunda:  a pesar de ello, estaba perfectamente capacitado para apreciar la belleza de la geometría.

El número de dos cifras

Contar es la primera actividad matemática que ha practicado todo ser humano. Por supuesto, se le debe dedicar la atención necesaria en los primeros años de escolarización, pero creo que su enseñanza no presenta grandes dificultades. Después de todo, los monos saben contar. (Es cierto que existe un pequeño porcentaje de niños con algún trastorno del aprendizaje que les puede ocasionar dificultades en el recuento, pero no voy a cometer la osadía de hablar de este tema, no lo conozco).

Creo que el primer momento en el que aparece la disyuntiva entre un aprendizaje reflexivo y basado en las ideas, y un aprendizaje basado en las rutinas y la memoria, es en el primer curso de primaria, con la introducción del número de dos cifras. Salvo escasas excepciones, la metodología utilizada en nuestro país (y presentada por los textos mayoritarios) es la siguiente: tras un repaso de los números del 0 al 9, se introducen los números del 10 al 19 en el tema 1, los números del 20 al 29 en el tema 2, y así sucesivamente. Al terminar el tema 9, hemos llegado al número 99. La confusión que un niño debe experimentar cuando le dicen que los conocidos símbolos 1 y 0, al yuxtaponenerse se convierten en el número que sigue al 9 es difícil de imaginar. Bueno, los lectores que no conozcan la representación de un número en base b podrían llegar a intuirla, si se paran a pensar en cómo escribiríamos el número 8 si los humanos tuviéramos 8 dedos y contáramos, por tanto, haciendo «octenas» en lugar de decenas.

Por supuesto, este enfoque basado en la memoria crea todo tipo de problemas de aprendizaje, y la aparición del 0 será motivo de quebraderos de cabeza para muchos niños durante años: si aparece en una posición intermedia en números de 3 ó más cifras, si aparece en el multiplicador, o en el dividendo, o en el divisor …

Durante la introducción de los números se hacen, por supuesto, multitud de ejercicios del tipo:

  • Descompón el número 50 como 50 + 8.
  • Subraya (o colorea) las decenas y las unidades.

Desde mi punto de vista, se trata sólo de parches, y lo normal es que muchos niños terminen el proceso sin haber desarrollado lo que debería ser el objetivo fundamental de esta etapa, adquirir sentido númerico, y entender el sistema de notación posicional. Esto hace que, para calcular una suma como  67 + 10 su única herramienta sea el conteo, y que necesiten el algoritmo de la suma para poder empezar a hacer cálculos sencillos.

¿Cuál es, entonces, la alternativa? La primera idea importante que se debería transmitir es que vamos a contar «haciendo grupos de diez» (ojo: esto no quiere decir que ya tengamos que introducir la representación del diez como 10). Se deberían hacer ejercicios de conteo durante varias clases, que los niños responderían con frases como: «aquí hay 3 grupos de diez y 4». Tras esta primera etapa, ya estarían preparados para que les digamos que ese número se representa como 34.  No voy a exponer aquí una secuencia metodológica detallada (aunque sería muy interesante saber si la carencia de materiales adecuados es una barrera importante para la extensión de este enfoque). Lo esencial es darse cuenta de que, con este enfoque, el niño puede plantearse el cálculo de forma mucho más reflexiva, generando sus propios procedimientos o, en otro caso, entendiendo los que se le presentan.

Un último comentario: sé que no estoy inventando nada, y lo que voy descubriendo de los países con mejores resultados en los tests internacionales es que ya han emprendiendo este camino (algunos hace años). En esta entrada ya comenté que en Holanda no se plantean el estudio de los algoritmos tradicionales de la aritmética hasta 4º de primaria. Otro ejemplo: en Canadá (bueno, en Alberta, cada provincia tiene su curriculum) se menciona una y otra vez la comprensión de los temas, y los algoritmos pasan casi completamente desapercibidos, como se puede ver en este documento.

Proporcionalidad y volumen

La falta de interdisciplinariedad es un problema del sistema educativo. Pero es que incluso dentro de las matemáticas, hay pocas actividades que combinen conceptos de distintas áreas: cuando se hace aritmética, a eso nos dedicamos, luego viene la geometría, o la representación de datos …

Por ejemplo, creo que se trabaja muy poco el tema de cómo cambia el volumen – o la masa – cuando un objeto cambia de dimensiones. No es sencillo desarrollar la intuición al respecto (creo que todos estamos de acuerdo en que hay algo de sorprendente en el resultado del problema de «la humanidad en fila» de la entrada anterior). Si se quiere comprobar cuál es el estado de la cuestión «en la calle», no hay más que preguntar a una «persona normal»  sobre cómo cambia el peso de una naranja cuando su tamaño – medido por el calibre (el diámetro) – se duplica. Yo lo he hecho varias veces, y la respuesta ha oscilado entre «no lo sé» y «también se duplica, claro». Cuando el interlocutor ha sido suficientemente paciente, por interesado o por simple aprecio personal, y me ha dejado la posibilidad de explicarle la respuesta, la reacción ha sido de sorpresa total, y además la actitud final suele ser un inconfundible «vale, las matemáticas dirán eso, pero no termino de creérmelo».

Este tema se debería tratar al menos desde dos puntos de vista.

El primero, desde el punto de vista curricular, sería como ejercicio de adquisición y representación de datos. Al final del segundo ciclo de primaria, y desde luego en el tercero, se podría plantear la siguiente actividad a los niños. «Para mañana, tenéis que traerme los siguientes datos. Tamaño y peso de tres naranjas (o manzanas, u otra fruta de temporada de forma aproximadamente esférica) de vuestra casa: la más grande que encontréis, la más pequeña y una de tamaño medio«. Creo que una cantidad suficiente de casas dispondrían de básculas de cocina de una precisión suficiente. Obsérverse que no he dado detalles sobre cómo medir el tamaño de la fruta. Decidir qué hay que medir sería parte de la actividad, y continuaríamos en la clase del día siguiente con la puesta en común de las diferentes medidas, ventajas, inconvenientes, e investigando la relación entre ellas. Finalmente, representaríamos los datos y estudiaríamos qué conclusiones se pueden sacar de la gráfica correspondiente.

El siguiente enfoque es posible al final del tercer ciclo, y en la enseñanza secundaria, cuando ya se ha hecho un estudio más formal del volumen. Además de la pregunta original sobre la duplicación de la esfera, se podrían tratar cuestiones como esta: ¿cómo cambia el volumen de un cilindro si el radio de la base aumenta un 10% y la altura disminuye un 10%? (Dependiendo del curso, por supuesto, la pregunta se podría hacer de esta forma, o con unos datos concretos para radio y altura).

La creatividad es otro de los aspectos en general poco cuidados (una entrada sobre creatividad y  matemáticas está en la lista),  y creo que todos deberíamos estar atentos para proponer, siempre que fuera posible, una actividad que no tenga «una solución», sino varias. Relacionada con estos temas, se me ocurre la siguiente: diseña tres vasos cilíndricos de volumen 1/3 l, y estudia la relación entre sus dimensiones. Si el tiempo lo permite, se podrían construir en cartulina y comentar las ventajas e inconvenientes de los distintos diseños.

Ejercicios y problemas

La última entrada me dejó un sabor agridulce, no sé si me expliqué bien. Pero no voy a cometer el error de volver sobre el tema. Prefiero escribir sobre matemáticas, que creo que es lo que se me da un poco mejor.

No voy a entrar en profundas disquisiciones de qué es un ejercicio y qué es un problema. Para lo que quiero decir es suficiente esta idea:

  • un ejercicio es una tarea rutinaria, que se puede resolver limitándose a reproducir o imitar técnicas o procedimientos ya vistos.
  • un problema es una tarea que requiere, para su resolución, de algún tipo de actividad creativa:  bien porque es necesario adaptar una técnica conocida, bien porque hace falta combinar de una forma nueva algunos hechos conocidos.

Para un buen aprendizaje matemático es imprescidible hacer cierta cantidad de ejercicios. Creo que en eso estaremos todos de acuerdo. Pero también hace falta que los alumnos se enfrenten de forma regular al reto que supone la resolución de problemas, y creo que este aspecto no se está trabajando lo suficiente. Salvo honrosas excepciones, los estudiantes atraviesan nuestro sistema educativo sin enfrentarse a la resolución de problemas. Creo que esto lo pueden corroborar todos los profesores de primer curso de universidad, que ante la propuesta de un problema sólo encuentran, en buena parte de la clase, la reacción casi automática «no sé hacerlo».  Vencer ese horror al «papel en blanco» es tanto más difícil cuanto más tarde se intente y, como en tantos otros aspectos, cuanto antes empecemos mejor. La buena noticia es que es relativamente sencillo proponer auténticos problemas en los primeros cursos de la enseñanza primaria. Es suficiente con proponer problemas de suma o resta, o de reparto, antes de haber introducido los algoritmos correspondientes, tal y como se hace, por ejemplo, en Holanda, según comentaba en una de mis primeras entradas.

Para un niño de 6 años al que se le acaba de introducir en la notación posicional, con el número de dos cifras, la pregunta: «Tengo 36 cromos, y los quiero repartir por igual entre mis dos amigos. ¿Cuántos cromos debo dar a cada uno?» reúne, claramente, todos los requisitos de un buen problema.

Una de las tareas más difíciles, y más importantes, de un buen docente, es ser capaz de proporcionar algún tipo de ayuda a un alumno que está intentando resolver un problema, sin desvelarle más de lo necesario.

No es sencillo proponer un buen problema: no debe ser ni muy sencillo ni muy difícil, lo ideal es que tenga alguna relación con el entorno o que interpele de alguna forma al alumno, o que presente un resultado llamativo. Por ello, una buena colección de problemas es un auténtico tesoro. Me ofrezco desde aquí a arrancar un repositorio de «buenos problemas», para todos los niveles del sistema educativo, y que podrían ser votados por los usuarios.

Y para romper el hielo, aquí va el primero, mi favorito desde que lo descubrí (siento omitir la cita, pero he olvidado donde lo vi, hasta he olvidado cuál era exactamente la versión del problema que vi). Yo diría que es adecuado para el final de la primaria o el principio de la secundaria.

  • Supongamos que la humanidad se pone en fila india. ¿Cuántas veces daría la vuelta a la tierra esa fila india?

No, no he olvidado ningún dato. Parte del problema es que piensen qué datos necesitan, que aprendan a hacer aproximaciones y que hagan suposiciones razonables (como la distancia entre las personas de la fila). Por supuesto, esto obliga a que el problema se resuelva en una sala con algún ordenador, o a que se proponga en la parte final de la clase, se trabaje la parte de ¿qué datos necesito? y se resuelva al día siguiente con los datos obtenidos en casa. El problema tiene dos partes más:

  • Ahora supongamos que toda la humanidad viene a la Comunidad de Madrid -vivo en Madrid, pero este dato es fácilmente generalizable 🙂 -. ¿Cabríamos? ¿Cuánto espacio le tocaría a cada persona?

Y por último (puede ser un poco siniestro, lo sé, pero el resultado merece la pena):

  • El doctor No dispone de un terreno en forma de cuadrado de 1 km de lado, y en él quiere hacer una fosa común donde enterrar a toda la humanidad. ¿De qué profundidad debe hacer la fosa?
    Una alternativa más poética, pero quizá más difícil de entender por un alumno: ¿cuál es el volumen de la humanidad?

Una petición: si alguien se anima a llevar al aula este problema, o cualquier propuesta que aparezca en estas páginas, estaré encantado de recibir algo de feedback, bien con un simple comentario, o con más detalle en mi correo electrónico, que se puede encontrar aquí.

Una última cosa por hoy: en este enlace dejo una copia de las tareas del tema «El área del triángulo», del curso correspondiente a 5º de Primaria, de unos  textos que he descubierto hace poco. Creo que tiene un diseño estupendo, con una gradación perfecta, empezando por sencillos ejercicios, y avanzando de forma gradual, para terminar en auténticos problemas. Compararlo con todos los textos españoles que han caído en mis manos me ha dado bastante en qué pensar.

La regla de tres

Cuando termina 3º de Primaria, un niño está perfectamente capacitado para resolver un problema como éste:

«Si 3 billetes de tren cuestan 15 euros, ¿cuánto cuestan 5 billetes iguales?»

Sin embargo, cuando en 5º estudia proporcionalidad, le enseñan una nueva «receta» para resolver este tipo de problemas, la regla de tres, que se representa, quizá con alguna ligera variación, así:

¿Y cuál es el problema? La regla de tres es un algoritmo sencillo y eficiente para resolver problemas de proporcionalidad, pensará más de un lector. Y esto es cierto, sin duda. Pero tiene un inconveniente, que creo que es común a muchos de los algoritmos tradicionales, y es que «esconde», o al menos no muestra de forma clara, el concepto subyacente: la idea de proporcionalidad. Y esto hace que, aunque haya sido introducida de manera adecuada (y, por desgracia, demasiadas veces esto no es así), tras haberla aplicado de forma rutinaria en multitud de ocasiones, es muy fácil que muchos alumnos olviden las ideas que la justifican, y la apliquen de forma mecánida. Las posibles consecuencias son obvias: se olvida poco tiempo después de haberla estudiado, se aplica de manera inadecuada a situaciones no proporcionales, se confunde proporcionalidad directa e inversa, no se sabe aplicar a situaciones cotidianas …

¿Hay alternativas? Por supuesto. De hecho, parece que en este punto también, Spain is different. Sin haber hecho un estudio exhaustivo, sólo he encontrado la técnica de la regla de tres en España y algunos países hispanoamericanos. Asia y el mundo anglosajón utilizan enfoques diferentes. Si algún lector conoce algún estudio, geográfico o histórico, sobre la regla de tres, estaría encantado de recibir alguna información al respecto.

El enfoque alternativo más obvio es el del niño de 3º del principio del post. Si 3 billetes cuestan 15 euros, cada billete cuesta 5 euros, y por tanto 5 billetes costarán 25 euros. Esta técnica se suele conocer con el nombre de reducción a la unidad. Su gran ventaja es que no se basa en ninguna nueva técnica, sino simplemente en aplicar ideas ya conocidas a nuevas situaciones. Es, claramente, la adecuada si perseguimos un aprendizaje significativo. Y una vez dominada resuelve otros temas, como los cambios de unidades. En lugar de intentar que los niños memoricen la lista de las unidades Km, Hm, dam, m, etc, y que hay que añadir un cero por cada posición que nos movemos a la derecha, y quitarlo cuando nos movemos a la izquierda (¿o era al revés?), nos podríamos limitar a aprender, por ejemplo, que 1 km son 1000 m. A partir de ahí, todo debería estar claro.

Una herramienta interesante para la proporcionalidad son los diagramas de barras, utilizados en la enseñanza en Singapur (Singapur es, desde hace 20 años, uno de los países líderes en las pruebas de referencia sobre competencia matemática de los estudiantes – PISA, TIMSS). Hablaré sobre ella en un próximo post.

La aritmética en primaria

La aritmética «tradicional» (para entendernos, los algoritmos tradicionales de las 4 operaciones básicas, a los que me referiré en adelante como la aritmética de lápiz y papel), sigue ocupando un lugar central en los contenidos de las matemáticas de primaria. Mis estimaciones son que al menos la tercera parte del tiempo que los alumnos dedican a las matemáticas en primaria, están en realidad haciendo cuentas. Me temo que el título del blog desvela mi opinión sobre el particular, pero en este primer post sobre el tema querría simplemente exponer algunas ideas básicas para la reflexión de los lectores.

Luis Santaló fue uno de los grandes matemáticos españoles del siglo XX. En 1991 pronunció unas conferencias en la Universitat de Girona, recopiladas en el libro La Matemática: una filosofía y una técnica, Ed. Ariel. En la página 11, se puede leer:

Para quienes tan sólo recuerdan la matemática que aprendieron en la escuela primaria, la matemática se halla integrada por los cálculos aritméticos comunes y por los nombres y las propiedades de algunas figuras geométricas. Para ellos, la matemática consiste en las cuatro operaciones con números enteros o con fracciones, necesarias para resolver los problemas de regla de tres, porcentajes, repartos proporcionales, o en sus aplicaciones para calcular áreas y volúmenes. Para ellos, saber matemáticas es saber calcular y, por consiguiente, con la aparición de las calculadoras electrónicas, que hacen inútil la habilidad de cálculo, consideran que la matemática ha perdido ya su interés y que cada día es menos necesario aprenderla en la escuela. Ahora bien, dado que la supresión de la matemática en la escuela produciría cierto vacío -vacío que provoca el horror clásico-, opinan que la mejor solución es no permitir el uso de las calculadoras en la escuela, con el objeto de que los alumnos continúen calculando como siempre se ha hecho.

Han pasado más de 20 años, pero la situación sigue siendo, en la gran mayoría de los casos, exactamente la misma. El tema es amplio, y lo volveré a tratar en el futuro. Hoy querría centrarme en una primera pregunta: ¿cuáles son los beneficios del aprendizaje de la aritmética de lápiz y papel? De forma más precisa: el tiempo invertido para aprender, por ejemplo, el algoritmo de la división cuando el divisor tiene 2 ó 3 cifras (la «división larga» de los anglosajones»), ¿qué tipo de beneficios reporta al aprendizaje de las matemáticas?

Con ánimo de ser exhaustivo, quiero considerar tres tipos de posibles beneficios:

  1. la utilidad en la vida cotidiana.
  2. la utilidad para el propio aprendizaje de las matemáticas.
  3. el fomento de otro tipo de capacidades como la concentración, el esfuerzo, la atención al detalle, etc.

Creo que poca gente dudará en descartar el apartado 1. ¿Cuándo fue la última vez que el lector hizo una división o una multiplicación en un papel? (Evidentemente, no valen las cuentas relacionadas con tareas escolares). Quizá se pueda aducir que es útil saber, ante una cuenta compartida en una cena con los amigos, cuánto debe pagar cada uno. Cierto, pero esto se debería hacer con cálculo mental, y obtener al menos una buena aproximación. Si queremos llegar al céntimo, o sacar aún más decimales, es mucho más probable que tengamos a mano un artilugio que incluya una calculadora que un lápiz y un papel …

El apartado 2 puede ser menos claro para muchos lectores, pero creo que el consenso entre los especialistas también es claro. Los algoritmos tradicionales no ayudan a desarrollar lo que se conoce como «sentido numérico». De nuevo, es el cálculo mental lo que se debe practicar si uno quiere desarrollar el sentido numérico.

De forma que sólo el apartado 3 sobrevive a este primer análisis, y debo aceptar que este apartado sí es cierto. La pregunta aquí es, ¿a qué precio desarrollamos estas capacidades? No es sólo que requieran un tiempo que podría dedicarse a otras tareas; es también, y creo que incluso más importante, que una buena parte de los niños pierden en el proceso todo el interés por las matemáticas, por considerarlas inútiles y mortalmente aburridas. Creo que sólo la inercia de «es lo que se ha hecho siempre» nos hace a los padres y maestros no ser totalmente conscientes de esto.

Imaginemos el siguiente ejemplo. Supongamos que el nuevo profesor de educación física de la clase de 4º A nos dijera:

Este trimestre les voy a plantear a los alumnos la siguiente tarea dos veces por semana. Durante media hora van a hacer un agujero, transportar la tierra al otro extremo del patio, y después volverán a traer la tierra a su lugar original, tapando el agujero. Y no pueden traer de casa ninguna herramienta que les ayude en el trabajo. Aquí les proporcionaré unos pequeños juguetes de playa. Es una actividad beneficiosa: es ejercicio físico y mejorará el estado muscular de todo el cuerpo, y requiere concentración y esfuerzo para terminar la tarea con éxito. Será muy útil para mejorar su forma física.

¿De verdad está el ejemplo completamente fuera de lugar?