Shanghai-Singapur

Tenía pensado cerrar el curso con una entrada sobre la Escuela Miguel de Guzmán, pero este tweet se ha cruzado en mis planes.

Lo único que había visto hasta ahora de Shanghai era sus excelentes resultados en las pruebas de siempre. No parece que sea sencillo conseguir información. No he encontrado su currículo en inglés, y los textos que usan allí tampoco están en inglés. Parece que este tema ha surgido por el proyecto de implantar estas metodologías en colegios (de primaria) de Gran Bretaña. Aquí  hay algo de información sobre Shanghai, y algunos materiales de muestra (de los primeros cursos de primaria).

En este otro enlace de Maths no Problem se puede leer una comparativa sobre Singapur y Shanghai. Creo que debo avisar de que es una comparativa interesada: Maths no Problem es la editorial británica que empezó a trabajar con Marshall  Cavendish, la editorial más importante de Singapur. Recientemente Marshall Cavendish se ha aliado con Oxford University Press (aquí) y creo que Maths no Problem está trabajando con otra editorial de Singapur. En cualquier caso (y aunque mi opinión también puede estar sesgada, desde luego), creo que tienen bastante razón en lo que dicen. La fortaleza esencial de Shanghai puede ser la excelente preparación de su profesorado, mientras que la metodología de Singapur puede depender menos de la excelencia del docente (eso no quiere decir que lo ideal no sea tener buenos docentes, claro, en este espacio no creo que haya que hablar de una función de varias variables).

Lo que sí es cierto sobre Singapur, y esto lo he repetido muchas veces en las últimas semanas, presentando los libros de Polygon Education en los colegios de la zona de Madrid, es que la metodología de Singapur se hizo famosa, a nivel internacional, por su éxito en el movimiento homeschooling de EEUU. ¿La razón? Creo que sencilla: los padres descubrieron que «esas matemáticas» sí las entendían. Y también es cierto que en Singapur eligieron la metodología teniendo bien presente que sus docentes de hace 30 años tenían una formación más bien tirando a básica. Las cosas han cambiado, desde luego (por ejemplo, los profes de Singapur tienen 100 horas de formación continua obligatoria al año. Vamos, 6 veces más que aquí en cantidad. Y apuesto a que en calidad también nos aventajan) pero creo que algo de esa idea de «facilidad de presentación» todavía subsiste.

Termino con una especulación: el lector atento se puede haber dado cuenta de que detrás de los materiales de Shanghai que enlacé arriba está Collins, otra de las grandes editoriales británicas. Es posible que la razón de que aparezca Shanghai sea simplemente que es la forma que Collins ha encontrado de unirse al movimiento de renovación en Gran Bretaña, porque allí el gobierno ha puesto mucho dinero en este tema.

 

Hipónimos e hiperónimos

Somos el país de la taxonomía, nos encanta dar nombres, clasificar, y luego poder pedir a nuestros alumnos que memoricen todo lo que se nos ocurra. Resulta simplemente kafkiano que, en un descanso de una lectura de un Trabajo Fin de Grado, en el que compruebas una vez más que muchos de nuestros graduados tienen serios problemas para expresarse con una mínima corrección, puedas escuchar a tu hija, que cursa 1º de Bachillerato, que está estudiando un examen de lengua, y está repasando los sustantivos hipónimos e hiperónimos.
Simplemente, estamos locos.

Escuela Miguel de Guzmán

Hoy una entrada breve para anunciar la IX Escuela de Educación Matemática Miguel de Guzmán, organizada de forma conjunta por la Federación Española de Sociedades de Profesores de Matemáticas y la Real Sociedad Matemática Española.

Será los días 6-7-8 de julio, en la Universidad de Alcalá. El título de la Escuela es «Qué enseñar y cómo hacerlo: nuevas metodologías», y aunque me gustaría que el programa tuviera más espacio para discutir el «qué», antes de pasar al «cómo», algo hay en esa dirección, y espero que la participación del profesorado ayude. El plazo de inscripción es del 2 de mayo al 20 de junio.

Más información en la página de la FESPM y en la de la RSME.

Y éste es el cartel anunciador, por si tenéis ocasión de ponerlo en vuestros centros.

 

La probabilidad de las causas

Me parece una expresión muy adecuada para presentar la idea detrás del Teorema de Bayes: si un cierto test médico ha dado positivo, hay dos posibles causas, que la persona esté enferma, o que se trate de un falso positivo. ¿Cómo de probable es cada una de ellas? Esa es justamente la pregunta que contesta la conocida fórmula:

Bayes

Seguro que la mayoría de los lectores la conocen, es el resultado final del tema estándar de probabilidad elemental, y parte del temario de las matemáticas de bachillerato. Pero si algún lector no la conoce, que siga leyendo, por favor. Parte de esta entrada estará dedicada al significado de la fórmula de Bayes.

Pero antes, quería dedicarle un párrafo al libro en el que he descubierto la expresión «La probabilidad de las causas» para presentar la fórmula de Bayes. Es un texto escrito por dos compañeros de mi departamento. Aunque está pensado para un curso de Estadística de 1º de un Grado en el área de Ciencias/Ciencias de la Salud, creo que puede ser útil en Bachillerato, y en general para cualquiera que quiera entender las ideas de fondo de la Estadística. Porque lo que me ha resultado más atractivo del libro es su empeño (casi siempre coronado por el éxito) en transmitir las ideas de fondo tras las técnicas básicas de la Estadística. Es posible que me haya resultado tan interesante precisamente porque ha permitido que entienda algunas de las cosas que siempre me habían resultado escurridizas. El libro está accesible online y además está acompañado de una parte práctica que incluye una introducción a R.

Veamos ahora un ejemplo estándar de aplicación del Teorema de Bayes a un test de diagnóstico. Supongamos que cierta enfermedad afecta al 0,5 % de la población, y que tenemos una prueba para detectarla. Ninguna prueba es completamente fiable, y hay dos tipos de errores. Los falsos positivos son los casos en los que la prueba da positivo aunque la persona no está enferma, y los falsos negativos son los casos en los que la prueba da negativa aunque la persona está enferma. Es fácil imaginar que en la práctica existe una relación entre estos dos tipos de errores, y que para hacer muy pequeña la cantidad de falsos negativos necesitaremos pruebas muy sensibles, que tendrán, en general, una tasa mayor de falsos positivos. Compensar adecuadamente estos dos parámetros es uno de los problemas centrales del diseño de pruebas médicas, ya que el equilibrio deseable varía en cada situación. En nuestro ejemplo, y para simplificar, supondremos que no hay falsos negativos, y que los falsos positivos son el 5 %.

Supongamos ahora que elegimos una persona al azar, le hacemos la prueba y el resultado es positivo. ¿Qué probabilidad hay de que esté enferma? Si llamamos E al suceso «persona enferma»,  y + al suceso «resultado de la prueba positivo», en el lenguaje de la probabilidad condicionada la probabilidad que queremos calcular es P(E|+)Según la fórmula de Bayes,

enfermo-Bayes

Es decir, en términos de porcentajes, la probabilidad de que la persona esté enferma es aproximadamente el 9,09 %. No despreciable, desde luego. El resultado positivo de la prueba la ha multiplicado casi por 20, pero seguramente es más baja de lo que los lectores sin experiencia en este tema esperaban.

Creo que la forma más sencilla de entender este resultado (y de entender la fórmula de Bayes), es pensarlo en términos de fracciones. El rectángulo de la figura representa el total de la población, el rectángulo rojo de la esquina superior izquierda las personas enfermas, y el rectángulo rojo de la esquina inferior derecha los falsos positivos. El modelo está hecho a escala, de forma que las áreas relativas representan las probabilidades. En este modelo, la pregunta anterior – el resultado de la prueba en una persona elegida al azar es positivo, ¿cuál es la probabilidad de que esté enferma? – se convierte en: elegimos un punto rojo al azar (un resultado positivo). ¿Cuál es la probabilidad de que sea un punto de la esquina superior izquierda? Como el área total de los puntos rojos (como fracción del total) es 0,005 + 0,05 y el área de la esquina superior izquierda es 0,005, vemos que la probabilidad es, en efecto, 0,0909.

Bayes-ej

El debate sobre los deberes

En un comentario de la última entrada Lucas preguntaba por el programa de Jesús Cintora sobre los deberes, en particular sobre la intervención de Alberto Royo, autor de «Contra la nueva educación» (autor y libro que yo descubrí en el programa).

Mi conclusión principal sobre el programa es que es frustrante el poco rigor y la poca profundidad que hay en nuestro debate público. Como ya han pasado unos días, si algún lector quiere refrescar la memoria el programa está aquí y la intervención de Alberto Royo empieza en el minuto 23:30. Creo que merece la pena complementar esos minutos con esta entrada de su blog,

En este debate siempre he echado de menos los números. Ya en las lejanas reuniones del cole de mis hijas, lo único que intentaba cuando surgía el inevitable debate entre los bandos de padres pro y anti deberes era poner algún número a la cantidad de deberes. Nunca lo conseguí, los maestros solían salirse por la tangente de «cada niño es distinto». ¡Pues claro que cada niño es distinto! Por eso no tiene sentido mandarles a todos las mismas tareas, al que las necesita y al que no, al que se concentra y las hace en media hora y al que todavía se distrae mucho, y necesita media tarde para ello.

José Antonio Marina (minuto 49) sí se atrevió a poner un número: 15 minutos al día en 1º y subiendo 15 minutos cada curso. Me parece que llegar a 1,5 horas al final de primara es demasiado, pero al menos con estas cifras se podría empezar a hablar.

Como prueba de la superficialidad del programa me quedo con la situación de la estudiante de ESO (1h 02 min), y el relato de sus tareas del día: «pasar a limpio» una redacción de inglés y estudiar para el examen, estudiar los resúmenes de sociales y un ejercicio de matemáticas. Es verdad que «estudiar para un examen» es una tarea con duración difícil de valorar, y lo mismo estudiar los resúmenes, pero su madre en el programa dice que es una chica eficiente y que los hace en 1 hora. Mi reacción fue: ¿cómo es posible entonces que esté haciendo deberes a las 21:30? ¿No haría falta dar algo más de información sobre el horario de la estudiante durante esa tarde?

En fin, que el propósito fundamental de esta entrada era dar entrada al debate de los lectores que os animéis.

El sorteo de la Champions (y II)

Muchas gracias a todos por las aportaciones. Creo que ha habido tres soluciones distintas, y que tiene sentido recapitularlas.

  1. Con probabilidad elemental, fijando un primer equipo español, digamos el A. La probabilidad de que su rival sea español es 2/7. Que el rival de A no sea español tiene probabilidad 5/7, y en ese caso que el rival de B sea el tercer equipo español tiene probabilidad 1/5. Por tanto, la probabilidad de eliminatoria española era \frac{2}{7} + \frac{5}{7} \cdot \frac{1}{5} = \frac{3}{7}.
  2. Directamente con la regla de Laplace, contando casos favorables y posibles. En algún momento hablaremos de la combinatoria, casi desaparecida del currículo. Y cuando se trata, reducida a variaciones, permutaciones y combinaciones, con sus correspondientes fórmulas. A la hora de la verdad, muchas cosas no son nada de eso. Por ejemplo, los posibles emparejamientos entre n equipos.
    Para la primera eliminatoria hay \binom{n}{2} posibilidades, para la segunda \binom{n-2}{2}, etc. Como es mejor ignorar el orden de esos emparejamientos, tras dividir por (\frac{n}{2})! se obtiene la fórmula para el número de emparejamientos entre n equipos: \frac{\binom{n}{2} \binom{n-2}{2} \cdots \binom{2}{2}}{(\frac{n}{2})!}. Tras simplificar queda (como observó ricardito) que el número de emparejamientos entre n equipos es el producto de los impares menores que n. En el caso de los 8 equipos, 7 \times 5 \times 3.
    ¿En cuántos de ellos hay eliminatoria española? Hay 3 posibles emparejamientos entre equipos españoles, y para cada uno de ellos hay que emparejar los restantes 6 equipos. Por tanto, hay 3 \times 5 \times 3 emparejamientos con eliminatoria española.
  3. Para terminar, mi modelo de las bolas rojas. Consideramos 8 posiciones, distribuidas en 4 cajas. La posición 1 y 2 en la primera caja, la 3 y la 4 en la segunda, etc. Hay \binom{8}{3}=56 formas de colocar 3 bolas en esas 8 posiciones.  Si en una caja hay dos bolas, hay 6 huecos para la bola roja restante. Por tanto, en 4\times 6 de las distribuciones de bolas hay 2 en la misma caja, y la probabilidad es \frac{24}{56} = \frac{3}{7}.

El sorteo de la Champions y los modelos matemáticos

Actualización 3: un lector pregunta por los detalles del sorteo. Creo que lo razonable es aclarar eso al principio. Se trata de un sorteo puro, cualquier combinación es igualmente probable. Los detalles de cómo se lleva a cabo el sorteo «real» son irrelevantes, eso es parte del tema de «elegir bien el modelo», sobre el que quería escribir en esta entrada. En todo caso, simplemente hay 8 bolas en un bombo, y se van extrayendo una a una. Se empareja 1ª con 2ª, 3ª con 4ª, etc.

Tal y como ha quedado la entrada, creo que también es justo avisar a los lectores de que el reto es encontrar el fallo en los dos primeros argumentos. 

———————————————————

A cuenta del sorteo de la Champions, en el que de un total de 8 equipos tenemos 3 españoles, @edusadeci lanzó la pregunta de qué probabilidad hay de que el sorteo empareje a dos equipos españoles, ya advirtiendo de que no es un problema tan sencillo como parece. Merece la pena echar un vistazo a las respuestas, realmente variadas …

Creo que es un ejemplo más de lo difícil que es la probabilidad, y de que muy pronto aparecen preguntas «sencillas» nada fáciles de contestar.

El aspecto que más me interesa del problema es que es un ejemplo perfecto de la importancia de elegir un buen modelo. Desde luego, la probabilidad se puede calcular directamente contando resultados del sorteo. Pero no es sencillo, y es otro buen ejemplo de lo sutil que es la combinatoria, sobre todo dado lo desentrenados que estamos en ella (su presencia en la educación matemática obligatoria es menos que testimonial).

El modelo que me parece más sencillo para contestar la pregunta original es considerar 4 cestos, y 3 bolas rojas. Si colocamos al azar las 3 bolas en los cestos, ¿cuál es la probabilidad de que caigan en cestos distintos? La clave para darse cuenta de que es el mismo problema es considerar las 8 bolas del sorteo, y ver el sorteo como el procedimiento de extraer bolas, al azar, e irlas colocando de dos en dos en los cestos. Podemos imaginar las bolas de los equipos españoles coloreadas de rojo, y darnos cuenta de que realmente el resto de las bolas ¡no juegan ningún papel! Visto así, queda también claro que se trata de una variante del problema del cumpleaños, donde tenemos 3 personas, que cumplen años en 4 días (con probabilidad uniforme, e independientes, claro) y nos preguntamos por la probabilidad de que sus cumpleaños sean distintos.

Una vez hemos llegado aquí, el resto es probabilidad «sencilla». Si numeramos las 3 bolas según el orden en que las colocamos en los cestos y consideramos los sucesos

A_i \equiv «la bola i cae en un cesto vacío» (para i=2,3)

vemos que calcular la probabilidad de que no haya eliminatoria entre dos equipos españoles es una pregunta que se puede responder con conocimientos básicos de probabilidad condicionada:

probabilidad-Champions

Actualización: podría decir aquello de «estaba preparado para ver si alguien prestaba atención», pero en absoluto, mi argumento está mal, sin paliativos. Un fiel seguidor del blog me lo ha hecho ver: el problema del modelo que propongo es que no excluye que haya tres bolas en un cesto, cosa prohibida en el sorteo. Eso sí, la solución que propone el lector (matemático, como yo) creo que tampoco es correcta. Al final, esta entrada va a ser sobre todo una prueba de que, con la probabilidad y la combinatoria, cualquiera puede cometer errores. Y que modelar de forma correcta es complicado, aún en situaciones «sencillas».

Como ya no me fío de nada he decidido recurrir a la «fuerza bruta», y contar las formas de colocar 3 bolas rojas en 4 cestos, sin permitir que haya 3 en el mismo. Son 16, y aquí están: 

sorteo-bolas-rojas

De esas 16, sólo en 4 se evita el emparejamiento entre dos equipos españoles. Por tanto, la probabilidad de que haya una eliminatoria española es 3/4. Nada extraño que haya ocurrido … 

Actualización 2nuevo error, otra vez de principiante. Los sucesos de la figura NO son equiprobables. Si pensamos en las permutaciones de 8 elementos, que sí son equiprobables, y vemos el sorteo como emparejar 1 y 2, 3 y 4, etc, los sucesos con 3 bolas en distintos cestos se pueden completar a 8 permutaciones (en el sentido de contar sólo las posiciones de las bolas rojas), mientras que los que tienen dos bolas en un mismo cesto se pueden completar solo a 2. Visto así, el conteo para los sorteos sin emparejamiento español es 32/(32+56) = 4/7, que sí coincide con la solución que proponía Roberto Muñoz, el lector que me hizo ver mi primer error. 

Lo dicho, la probabilidad es resbaladiza, y si algún lector tiene un futbolín y cree que debo pasar por debajo de él, estoy dispuesto. 

El máximo común divisor

El pasado sábado hubo una interesante conversación en twitter alrededor del máximo común divisor y los algoritmos para calcularlo. @druizaguilera proponía este diagrama conjuntista para determinar los factores comunes: mcd-conjuntos

@raulf aportó este otro enfoque:

mcd-cuadraditos

 

todo empezó con este tuit del pasado 7 de febrero: https://twitter.com/dacilgonz/status/696336412078186498

Estos días he seguido dándole vueltas al tema, y han cristalizado algunas ideas sobre las que llevaba tiempo pensando.

El primer comentario es que los métodos propuestos son realmente algoritmos para calcular intersecciones de multiconjuntos, y mi gran pega es que enseñan muy poco sobre qué es el máximo común divisor. Mi impresión es que la mayor dificultad de este tema no es el cálculo, sino la comprensión del concepto, para poder aplicarlo en la resolución de problemas. Del vídeo que enlacé en su día sobre lo que hacían mal en Singapur en los años 70, me interesa cada vez más una de las cosas que se mencionan: los procedimientos y la comprensión conceptual hay que trabajarlos en paralelo (el vídeo dura 5 min, y este tema se empieza a tratar a los 40 seg):

Para trabajar en paralelo la comprensión y el cálculo del mcd (y del mcm) me parece más interesantes las actividades que proponen Cecilia Calvo y David Barba en su trabajo publicado en SUMA, y que los autores han puesto aquí (vía @druizaguilera).

El tema del máximo común divisor y el mínimo común múltiplo lo trato en magisterio, a todos los alumnos les suena la receta de «factores comunes …», y lo hacen bien, en general, sin necesidad de procedimientos ad hoc. Lo que me sorprende es que ninguno parece estar familiarizado con el hecho de que a partir de la factorización de un entero es fácil escribir el conjunto de sus divisores, lo cual es tanto como decir que no tienen idea de por qué funciona la receta que usan para calcular el máximo común divisor. Creo que es un tema sencillo de entender, no hay más que pararse a comparar el conjunto de divisores de un número como 36 con su factorización. La relación entre factorización y divisores da mucho juego (estos temas han sido para mí un descubrimiento reciente, a raíz de impartir clases en magisterio: la aritmética elemental está llena de relaciones que dan lugar a auténtico pensamiento matemático). Por ejemplo, a partir de la relación entre factorización y divisores se pueden contar el número de divisores de un entero: si n = p^2\cdot q^3\cdot r (p, q y r son números primos distintos, claro), entonces n tiene 24 divisores. A la inversa (examinar un problema al revés es una de las mejores formas de profundizar en su comprensión), puedo construir números con, por ejemplo, 18 divisores, de estas formas: p^8\cdot q, $p^5\cdot q^2$, p^2\cdot q^2 \cdot r. ¿Cuál es el número más pequeño que tiene 18 divisores?

Hay otro aspecto quizá incluso más importante. Los pedagogos dicen (y en este punto estoy de acuerdo con ellos) que algo se ha aprendido de verdad cuando el conocimiento se puede transferir a otra situación. Y aquí radica la extraordinaria potencia del método matemático: que las ideas y las estrategias que involucra son transferibles a una cantidad sencillamente sorprendente de situaciones. Cuanto más especializado sea un procedimiento, menos transferible será. No dudo de que las propuestas del principio de esta entrada sean útiles para que los alumnos hagan los cálculos necesarios para superar el examen correspondiente, lo que dudo es qué quedará de todo eso un año después de haber hecho ese examen.

Concurso: la fórmula más inútil

El otro día me encontré en el cuaderno de mi hija (1º de Bachillerato) con una fórmula para determinar el ángulo que forman dos rectas (bueno, su tangente) a partir de las pendientes. Esto me ha decidido a arrancar una idea que llevaba un tiempo rondándome la cabeza, y es convocar un concurso para elegir la fórmula más inútil de nuestra enseñanza media. Mantendré aquí una lista con las contribuciones, desde luego.

Aquí va la primera:

formula-pendientes

¿Qué aporta memorizar una fórmula para calcular el ángulo directamente con las pendientes? ¿No es mucho más formativo saber, simplemente, que el ángulo de dos rectas es el ángulo que forman sus vectores directores (con la precaución de que sea el ángulo agudo, claro) y saber cómo obtener la pendiente del vector director, o viceversa?

¿Por qué recurren al móvil para calcular el doble de 16?

Justo antes de navidades vi un par de tuits de @unmatematico que decían

Alumnos de ingeniería que usan la calculadora para operaciones del tipo «32 – 24», «-3-2+1» [sic] y cosas similares

Acabo de ver dos más muy buenas «2x2x4» y «9-16». Realmente tenemos un problema …

Creo que muchos hemos visto cosas similares. En mi caso, la última que recuerdo es la que da título a esta entrada. Contesté al tuit, preguntando por las posibles causas, y @druizaguilera contestó con esta lista:

  1. prohibición en primaria + uso indiscriminado en secundaria (y sin instrucciones)
  2. poco trabajo del cálculo mental
  3. pocas (nulas) estrategias personales de cálculo
  4. pereza

Contesté diciendo que estoy esencialmente de acuerdo (algo se podría matizar, porque obviamente 3 es consecuencia directa de 2), pero que me falta una, y es el exceso de cálculo tradicional, sobre todo en primaria. A esto @unmatematico contestó diciendo que no veía claro el mecanismo por el cual el exceso de cálculo en primaria podría llevar a usar la calculadora para operaciones como las mencionadas en la universidad, y me comprometí a exponer mis reflexiones, con el espacio adecuado, en una entrada del blog. Aquí está.

Es verdad que no es imposible trabajar tanto los algoritmos tradicionales como las estrategias de cálculo mental. De hecho, esto es lo que se debería hacer, porque es lo que figura en nuestro currículo de primaria (junto con la iniciación en el uso de la calculadora, y el decidir qué método usar en cada caso). Pero no es sencillo, porque las estrategias para el cálculo mental son distintas (a veces, casi contrapuestas) a las rutinas que se adquieren con los algoritmos tradicionales. De hecho, la principal dificultad que se encuentran mis alumnos para avanzar en el cálculo mental es que tratan de imitar mentalmente lo ya conocido para el papel. También se puede uno encontrar el caso contrario: el niño que ha desarrollado estrategias personales para el cálculo de sumas y que, al empezar en el cole con el algoritmo en columna pierde la comprensión del proceso de suma que había desarrollado.

Me parece que el problema tiene difícil solución mientras sigamos empeñados en que los niños aprendan a hacer divisiones con divisores de tres cifras, como la del ejemplo, sacada de un libro de 5º para la LOMCE y de un problema «realista»: una panadería hace 15408 barras de pan, y pone 237 en cada cesta. ¿Cuántas cestas necesita?

barras-pan

Nota final: encima, seguimos empeñados en comprimir la escritura de la división, en lugar de escribir ese 237 \times 5 que figura en la ayuda. Creo que estamos bastante solos en el mundo a la hora de comprimir así la división. Desde luego, no se hace en los países anglosajones. ¿Algún lector de habla hispana nos comenta cómo se escriben estas divisiones en su país?

Segunda nota final: la entrada me ha quedado menos convincente de lo que la imaginaba antes de empezar. Es un tema que daría para estudios y trabajos de aula.