Cálculo de primitivas (II)

A raíz de la entrada de ayer intercambié con @lolamenting una serie de mensajes que me han tenido pensando un rato. La conversación acabó con esta pregunta suya,

¿en 2° Bach Ciencias debemos ceñirnos a los contenidos de la PAU o preparar para una ingeniería?

a la que solo contesté que la respuesta requería un post. Aquí está.

Mi primera tentación fue responder que las dos cosas son, obviamente, lo mismo, pero luego me quedé pensando hasta qué punto eso es verdad y, sobre todo, por qué no está claro que sean lo mismo (porque sigo pensando que las dos cosas son, al menos muy aproximadamente, equivalentes). Henos aquí, una vez mas, ante un grave problema de comunicación entre niveles educativos, en este caso entre bachillerato y universidad.

Esta falta de comunicación es en sí mismo un gran problema, y creo que una de las causas principales es la poca claridad de nuestra legislación curricular. En la figura siguiente se puede ver lo que dice el currículo de la LOMCE sobre el cálculo de primitivas. Veremos qué dicen los currículos autonómicos, aunque me sorprendería que fuera diferente. Compararlo con la segunda parte de la figura, en la que muestro lo que dice al respecto el currículo de las «H2 Mathematics» de Singapur (el resaltado en «given» es mío): curriculos-integralesLas matemáticas H2 son las que me parecen mas equiparables a nuestras Matemáticas II, y de verdad que recomiendo un vistazo a su currículo. Creo que cualquier profesor que tiene que impartir ese currículo ve bastante claro qué tiene que hacer, y cualquier profesor que tiene enfrente a alumnos que han superado con éxito la asignatura correspondiente se hace una idea bastante clara de qué puede esperar de ellos.

Por contra, nuestra legislación curricular rebosa de logomaquia competencial (ojo: no estoy criticando el fondo de las competencias, sino la verborrea competencial que inunda nuestros decretos educativos) y descuida los detalles mas técnicos, pero imprescindibles para que el currículo sea eso, un currículo.

En este aspecto particular en la universidad no estamos mucho mejor, desde la reforma que trajo los planes de estudio de los grados, conocida como «planes de  Bolonia». Sobre lo que ha pasado en la universidad, recomiendo este artículo de Pello Salaburu, ex-rector de la Universidad del País Vasco. Es de octubre de 2011, pero no ha perdido un ápice de actualidad.

Volviendo a la pregunta original, lo que realmente tenemos que contestar es: ¿dónde empieza el estudio de la integración en 1º de Ingeniería? ¿Qué se da por ya sabido? No es una pregunta fácil de contestar. He echado un vistazo a algunas escuelas de ingeniería, pero la proliferación de aulas virtuales y demás espacios cerrados de aprendizaje ha hecho que los materiales de las asignaturas no sean accesibles desde el exterior, así que lo que voy a decir está basado simplemente en la información sobre lugares que conozco. Si algún lector tiene mas información, sería estupendo que la compartiera.

Mi impresión es que lo que necesita un alumno sobre integrales para abordar una ingeniería es saber unas pocas cosas muy básicas, pero tenerlas bien claras. Y por cosas muy básicas me refiero a saber que la integral es lineal, que la integral del producto no es el producto de las integrales, integrales básicas como \int e^{3x} \, dx y $\int x \cos x^2\, dx$, y ejemplos sencillos de integración por partes como $\int x e^{2x} \, dx$.

Y el problema mas extendido es que, al ver en 2º de Bachillerato bastante mas de lo que el tiempo disponible aconsejaría, el aprendizaje que se produce es superficial: los alumnos aplicados hacen las cosas en el examen, claro que sí, y en la PAU, pero llega el verano y en septiembre muchos de ellos tienen que volver a empezar casi desde cero. Vamos, uno de los problemas de fondo de nuestro sistema escolar (también en la universidad): ver mas de lo que los alumnos pueden realmente aprender.

 

Cálculo de primitivas en la PAU

Mirando los libros de 2º de Bachillerato veo integrales como las que yo proponía hace ya unos cuantos años en 1º de Ingeniería de Telecomunicación. Y he visto también listados de problemas de PAU que ganarían mucho si en cada problema figurara la fecha en la que se planteó. Por si sirve de ayuda, y para intentar evitar ese «vamos a hacer estas integrales, que las preguntan en la PAU», aquí están las integrales que han aparecido en la PAU de Madrid, desde el año 2010 hasta el  2014.

  • Junio 2010, opción B.
    Calcular el área de la región limitada por las funciones y = 9-x^2 e y=2x+1
  • Septiembre 2010, opción A.
    a) \int_{14}^{16} (x-15)^8 \,dx.  b) \int_9^{11} (x-10)^{19} (x-9)\,dx
  • Junio 2011, opción A.
    \int_{1}^{3} x \sqrt{4+5x^2} \,dx.
  • Septiembre 2011, opción A.
    \int_{0}^{1} \frac{x}{1+3x^2}\,dx.
  • Junio 2012, opción A.
    a) \int_0^{\pi} e^{2x}\cos x \,dx.  b) \int_0^{\pi/2} \frac{\sin 2x}{1+ \cos^2 2x}.
  • Septiembre 2012, opción B.
    Calcular \int_{0}^{\pi} x^2 \sin x \,dx.
  • Junio 2013, opción A.
    a) \int \frac{x-3}{x^2+9}\,dx.  b) \int_1^2 \frac{3-x^2+x^4}{x^3}\,dx.
  • Septiembre 2013, opción B.
    \int_0^{\pi/2} 2 \cos^2 x \,dx.
  • Junio 2014, opción A.
    Área de la región acotada limitada por el eje OX y la función x^4 + 4 x^3.
  • Septiembre 2014, opción A.
    \int_0^1 \bigl( \frac{1}{x+1} + \frac{x}{x+4}\bigr) \,dx.
  • Septiembre 2014, opción B.
    \int_1^{\ln 5} (x e^x + 3)\,dx

¿Andando o en autobús?

Parece que la comparación entre ir andando como equivalente al cálculo mental e ir en coche o autobús como equivalente al uso de la calculadora está haciendo fortuna en las últimas semanas.

Primero fue esta carta al director de El País de  Ricardo Moreno Castillo (el autor de «Panfleto antipedagógico»):

La utilidad de las calculadoras es indudable, como lo es la de los coches, pero no se ha de olvidar que así como el caminar sigue siendo un saludable ejercicio, también lo sigue siendo el cálculo mental. A mi juicio, las calculadoras no deben de ser usadas antes de los 14 años.

Hace unos días, un tuit de @notemates

Operar sin calculadora para ejercitar la mente es como ir al cole sin bus, andando para hacer ejercicio.

Las analogías suelen tener su peligro, pero creo que esta no es del todo mala. Sin embargo, si queremos que nos sirva para progresar en el debate creo que hace falta algo más de informacion.

Imaginemos que nos encontramos con una pareja de amigos debatiendo cómo ira su hijo al cole durante el curso próximo: «yo creo que es mejor que vaya en autobús», dice él. «Pues yo creo que es mejor que vaya andando», responde ella. Falta algo, ¿verdad? Si no conocemos la edad del niño y, sobre todo, a qué distancia está el colegio, es difícil hacerse una idea del sentido de la conversación.

Pues creo que lo mismo pasa con el debate sobre el cálculo mental y las calculadoras. Si la cuenta que hay que hacer es 12+9, que es el equivalente a que el colegio esté a dos manzanas en un barrio bien urbanizado, está claro que la cuenta se debería hacer de cabeza, sin mayor esfuerzo. Por el contrario, si el colegio estuviera a 10 km, que yo lo consideraría equivalente a tener que calcular 39876 \times 829, supongo que todos asumimos que el niño usará, en ambos casos, una tecnología propia del siglo XXI.

En resumen: creo que si queremos progresar en el debate no queda mas remedio que concretar qué nos parece adecuado para ser abordado con técnicas de cálculo mental/natural, qué cálculos creemos destinados a la calculadora, y si quedan cálculos en algún terreno intermedio.

Menos puede ser mas

Hace unas semanas recibí los textos de 3º y 4º de Secundaria de la serie «Mathematics matters», de Marshall-Cavendish, y aunque no he tenido tiempo de estudiarlos con detalle el primer vistazo resulta bastante impactante. No tengo claro si se trata de un enfoque alternativo a la serie «New mathematics counts», o si se trata de una evolución, pero el caso es que dan un paso mas en la «simplificación» de muchas técnicas que ya era llamativa en «New mathematics counts». Lo mejor para entender de qué estoy hablando es desde luego ver algún ejemplo, así que aquí está el capítulo del libro de 3º dedicado a las potencias (29 Mb). A la hora de revisarlo, es importante tener en cuenta que es el único capítulo de la secundaria que dedican a las potencias. Por supuesto que en ejercicios posteriores aparecerán cálculos con potencias, y de esta forma se repasan, pero no se vuelven a tratar de forma sistemática.

Aún mas llamativo que las concisas 34 páginas que le dedican al tema es lo «descargado» de las páginas de estos textos de Marshall-Cavendish. Acostumbrado a las abigarradas vistas de muchos de nuestros libros, que parecen seguir la filosofía de «cuanto mas, mejor» o «mas vale que sobre que no que falte», la sencillez de la exposición me resulta impactante. Por supuesto, la brevedad no impide que los hechos básicos, como que a^0 = 1, sean justificados (cuando pido a mis alumnos del máster de profesorado que justifiquen esa relación, la respuesta es casi siempre «porque es así»).

Y es que creo que ya tenemos suficientes datos para afirmar que la raíz de nuestro problema no es la escasez de horas de clase ni el trabajo de los alumnos; los datos de la imagen me parecen suficientemente elocuentes. Lo que necesitamos urgentemente es un profundo cambio de currículo y de enfoque metodológico.

horas-clase-deberesVía @educaINEE. Fuente: Panorama de la educación. Indicadores OCDE 2014

Mientras las soluciones vayan en esta dirección http://www.europapress.es/galicia/noticia-alumnos-eso-tendran-horas-mas-matematicas-20150324153403.html  (vía @jjcanido) o, cambiando de tercio, en que el estudiante haga otra hoja de divisiones, de ecuaciones logarítmicas, o de derivadas, la situación seguirá sin mejorar.

La raíz cuadrada

La verdad es que hasta hace un par de años había dado por hecho que el algoritmo tradicional para el cálculo de la raíz cuadrada había desaparecido de nuestras aulas. Supongo que la razón era sencillamente que mis hijas «se libraron» de él. Quizá en algún momento comentaron algo en clase, pero nunca las vi calculando en casa, ni lo prepararon para un examen.

Estos últimos años aprovecho cualquier ocasión para hablar con profesores, y he descubierto con algo de sorpresa que la situación puede ser algo diferente. Como siempre, por supuesto, no existen datos sobre lo que se está haciendo en las aulas, y los currículos no concretan lo suficiente. En la figura se puede ver lo que dicen sobre el tema tanto el currículo de la LOE como el nuevo de la LOMCE. ¿Forma parte del currículo el algoritmo tradicional para el cálculo de la raíz cuadrada? Bueno, creo que es tan defendible una cosa como la contraria …

raiz-cuadrada-curriculo

La «opinión de los libros de texto» (mayoritarios) no es difícil de adivinar, dada su inclinación al «cuanto mas mejor». En la figura se pueden ver dos ejemplos, los dos de ediciones recientes. Mi premio especial va para el ejemplo de la derecha, desde luego, no solo por el tamaño del número (118527) sino, sobre todo, por terminar con el resto (191), y dejarlo ahí, como si interpretar el resto de una raíz cuadrada fuera algo sencillo, o remotamente similar al resto de la división …

raiz-cuadrada-textos

Algunos países ya han eliminado el algoritmo de la división con divisores de dos o mas cifras, y seguro que muchos otros muchos se lo están pensando. Mientras, nosotros seguimos atascados en temas que han superado hace tiempo en otros lugares. No he encontrado referencia a este tema en ningún currículo/texto de otros países, y si no me diera mucha vergüenza emular al gran Donald Knuth casi me atrevería a ofrecer 10 € a cualquier lector que encontrara un ejemplo de este algoritmo fuera de nuestro país. Me parece un ejemplo perfecto de ese problema de educación viejuna del que se empieza a escribir con cierta regularidad en otros foros.

Una nota aclaratoria que ya me he acostumbrado a hacer siempre que hablo sobre estos temas es que por supuesto que los alumnos deben aprender a estimar raíces cuadradas, y a encontarlas si el tamaño del número es el adecuado. Creo que hacer esto con métodos de cálculo mental – cálculo natural enseña mucho mas sobre qué significa la raíz cuadrada que reproducir la receta del algoritmo tradicional.

Y una nota final: en algún debate algún profesor me ha dicho que «trabajar el algoritmo no hace daño». Bueno, puede que no; pero me parece discutible argumentar (con toda la razón) que no hay tiempo suficiente para tratar de forma adecuada los temas del currículo, y a la vez invertir parte de ese tiempo en el algoritmo de la raíz cuadrada. Además, puede ser cierto que a algunos niños les «gusta calcular» (yo nunca tuve ningún problema con ello, hice bastantes raíces cuadradas, y no tengo mal recuerdo de ello) pero hay otros alumnos a los que se les atraviesa el cálculo, por razones variadas, y que crecen con la sensación de que no valen para las matemáticas (o de que las matemáticas son un rollo inútil).

Proporcionalidad inversa

Se trata sin duda de uno de los conceptos mas escurridizos de la aritmética elemental. Cuando pregunto por el tema en clase al principio, los alumnos solo saben contestarme eso de «cuando una disminuye, la otra aumenta». Pero si les pido detalles y les pregunto, por ejemplo, si el precio de un producto y su demanda son magnitudes inversamente proporcionales, ya que la demanda crece cuando el precio disminuye, entonces el silencio es total …

El primer problema que les planteo es el siguiente:

Un grupo de amigos hacen una excursión por el desierto y llevan reservas de agua para 12 días. Sin embargo, hace mas calor de lo normal, y beben el 50% mas de lo previsto. ¿Cuándo se les termina el agua?

Inmediatamente surge la respuesta de «6 días». Pero entonces les planteo: bien, y si hubieran bebido el doble de lo previsto, ¿cuánto les habría durado el agua? Creo que es el momento del curso en el que el conflicto cognitivo es mas evidente en las miradas de la mayoría de los alumnos. Una vez que se dan cuenta de que 6 no puede ser la respuesta correcta, la siguiente propuesta suele ser 9, por aquello de «la mitad de la mitad» (está claro que nuestro cerebro es lineal). Hay que esperar unos minutos mas para que algún alumno dé con la respuesta correcta, normalmente con un argumento del tipo: «como beben el 50% mas, consumen en un día el agua que tenían previsto beber en 1,5 días. Por tanto, a los 8 días terminan el agua».  Una de las cosas que mas me gustan de este ejemplo es que, al evitar darles una cantidad concreta, suelo conseguir que ni siquiera intenten recurrir a la regla de tres.

Reconozco que no es un tema sencillo, pero me parece simplemente terrible la forma en que es tratado en los textos que conozco. Y los problemas mas habituales, con pintores y demás, por supuesto enfocados a su resolución con la correspondiente regla de tres. Me parece que sería mucho mas útil centrar el estudio en las magnitudes físicas, que están estudiando en la asignatura correspondiente, y que además son mucho mas realistas que los ejemplos usuales: la velocidad y el tiempo en un movimiento rectilíneo uniforme, y la presión y el volumen de un gas a temperatura constante. Creo que desde el lado de la física las cosas no funcionan mucho mejor, a juzgar por las caras que observo al enunciar la Ley de Boyle-Mariotte en términos de proporcionalidad inversa. No he hecho una búsqueda exhaustiva, pero en el texto de 4º que tengo en casa lo que dice es que V y 1/P son magnitudes proporcionales. Vamos, el error habitual: tirar por el camino mas «sencillo» … que no lleva a ningún sitio. La proporcionalidad inversa es seguramente el concepto de las matemáticas básicas donde la interdisciplinariedad debería jugar un papel mas importante, por evidente y útil.

Mi objetivo final en este tema es que mis alumnos entiendan que si en un movimiento uniforme la velocidad aumenta el 20%, el tiempo de viaje no disminuye el 20% (los resultados en este punto, discretos, sigo dándole vueltas a cómo hacerlo mas comprensible).

Termino con dos problemas que me gustan especialmente. El primero, uno de esos problemas que aparecen en libros de aritmética clásica, y con los que nuestros alumnos encuentran bastantes dificultades, ya que se trata de razonar, y no de operar:

Una nave sale de Nápoles hacia Barcelona y hace su viaje en 30 días. Otra sale de Barcelona hacia Nápoles y hace el viaje en 20 días.
¿En qué punto del trayecto se encuentran? (Se supone, claro, que las dos naves van por la misma ruta y que cada una de ellas mantiene durante todo el viaje la misma velocidad).

Y el segundo, de cosecha propia, pensado para convencerles de que hay alternativas mejores que la regla de tres compuesta:

Una ciudad medieval dispone de provisiones para 6 meses. Justo antes de ser sitiados por un ejército enemigo, la cuarta parte de su población huye, y al verse sitiados deciden reducir la ración diaria a 2/3 de la prevista. ¿Cuánto tiempo les durarán las provisiones?

Mas problemas, menos cuentas

Ya está operativa la comunidad de Procomún Mas problemas, menos cuentas. Es una comunidad restringida: cualquiera puede ver los materiales, pero para contribuir hay que solicitar un permiso. Os animo a que lo hagáis, por supuesto, se trata de una simple formalidad para evitar robots y cosas por el estilo. Veremos si la comunidad contribuye en algo al objetivo de potenciar la resolución de problemas en las aulas.

Hacia un espacio para compartir buenos problemas

En los comentarios a esta entrada hemos mantenido un debate sobre la conveniencia de abrir un foro donde cualquier interesado pueda aportar problemas interesantes, y donde los usuarios puedan votar las propuestas, de manera que se consiga que los problemas con la mejor acogida sean fácilmente accesibles. Juan José López sugirió que una comunidad en Procomún podía ser una buena opción. Sólo falta el nombre de la comunidad. La idea es que el foro esté abierto a la participación de todos los interesados, y creo que lo mejor es empezar ya decidiendo el nombre entre todos. Recogeré las propuestas para el nombre en los comentarios, hasta el martes 17 a las 23:59, y organizaré una encuesta con las propuestas.

Las «matemáticas de Singapur» en la prensa

Hoy me ha llegado a través de @manuel_de_leon este artículo en el abc que habla de cómo el modelo de educación matemática básica de Singapur se está extendiendo a varios países. Espero poder anunciar que algún colegio español se incorpora a esa lista el curso próximo. De momento, quería hacer un matiz sobre lo que se dice en la nota de prensa. Lo que se suele subrayar de la educación matemática en Singapur, que a veces se presenta como «método Singapur», es su enfoque en tres etapas, concreta -> pictórica -> abstracta. Es verdad que esa es la estrategia de presentación de los diferentes conceptos en los libros de primaria, los mas conocidos a nivel internacional. Y supongo que es una de las características mas evidentes de los libros, y por tanto la mas sencilla de vender a los no expertos. Pero no me parece la esencial. Mucho mas relevante me parece que ese método lo ponen al servicio de lo que yo considero su mejor cualidad: la atención a la comprensión conceptual. Por supuesto, esa comprensión conceptual requiere tiempo, y ese tiempo lo consiguen no a base de mas horas de clase, sino a base de un diseño curricular muy bien pensado, menos repetitivo y en el que han eliminado muchos temas a los que aquí dedicamos horas y horas (por ejemplo, la división con divisores de dos o mas dígitos). Estos son los índices de los textos de primaria «My Pals are here» de Marshal-Cavendish, los mas conocidos. Esa importancia relativa de la presentación concreta -> pictórica -> abstracta me resulta evidente al analizar la serie Pensar sin límites, la edición chilena de los textos de Singapur. La conozco un poco, porque estos dos meses tenemos en Alcalá a un grupo de maestros chilenos, que han venido becados por su gobierno para formarse en matemáticas básicas. El texto de 1º de Pensar sin límites es casi copia literal de la versión de Singapur. Sin embargo, al ir avanzando los cursos, y supongo que por exigencias del currículo chileno, que parece compartir muchos de los defectos del nuestro, los textos de Pensar sin límites se van separando cada vez mas del original, porque aunque siguen esa estrategia concreta -> pictórica -> abstracta la ponen al servicio de contenidos de pertinencia discutible.