Los datos de la Comunidad de Madrid sobre la PAU

Creo que uno de los grandes problemas de nuestro sistema educativo es la falta de datos fiables, y en general me inclino por que necesitamos más datos en casi todas partes. Pero lo único peor que no dar datos es dar datos que puedan generar incentivos perversos, y eso es lo que puede estar haciendo la Comunidad de Madrid con los datos de los institutos y la PAU (selectividad).

Ya de por sí puede ser cuestionable que los datos se publiquen sin ningún tipo de información sobre las características sociológicas del alumnado, que me parece imprescindible para poder hacerse una idea del valor añadido del centro, pero en el caso de la información sobre la PAU la cosa es bastante peor. Lo que se puede ver sobre un centro es un diagrama como el de la figura, donde se muestran las notas obtenidas en la PAU por los alumnos del centro y las notas medias de la comunidad (o los porcentajes de aprobados, o alguna otra variante).

datos-PAU-MadridNo hace falta ser un experto en gestión educativa para darse cuenta de que estos datos pueden generar incentivos perversos. Si un centro está interesado en mejorar sus resultados, la tentación de subir el nivel de exigencia en 2º de  Bachillerato, y que se presenten menos alumnos, pero mejor preparados, es muy, muy real. No tengo idea de si esto está pasando, pero lo frustrante es que sería realmente fácil de evitar: bastaría con presentar los datos completos, de alumnos matriculados en el centro, alumnos que superan 2º de Bachillerato, y luego los resultados de la PAU. Algunas veces, hacer las cosas mejor es realmente sencillo!

La derivada en 1º de Bachillerato (II)

Parece que está claro que el tema de cómo tratar la derivada en 1º de Bachillerato genera cierto debate. Me parece muy bien, siempre ha sido uno de los objetivos de este blog. Sigue en la lista una entrada sobre cómo se trata la introducción de la derivada en otros lugares, pero antes de eso me ha parecido conveniente aclarar los datos sobre uno de los argumentos más repetidos (no sólo en los comentarios, también siempre que hablo del tema con amigos profes). Se oye con bastante insistencia eso de que las derivadas se complican enseguida porque «es lo que les van a pedir en selectividad». Como digo, es una tarea que tenía pendiente, y este debate me ha decidido a vencer la pereza y lanzarme a ello. Estos son los ejercicios que involucran una derivada en las PAU de Madrid en los últimos cuatro años, aquellos a los que tengo fácil acceso en mi universidad.

  • Junio de 2010:
    Opción A, ej. 4. Preguntan los intervalos de crecimiento y decrecimiento de la función f(x) = \ln(x^2+4x-5).
  • Septiembre de 2010:
    Opción B, ej. 2. Preguntan representación e intervalos de concavidad de la función  f(x) = \displaystyle \frac{3x^2+5x-20}{x+5}.
  • Junio  de 2011:
    Opción A, ej. 3. Extremos absolutos de la función f(x)=\sqrt{12-3x^2}.
    Opción B, ej. 1. Para qué valor de a la función \displaystyle f(x)=\frac{ax^4+1}{x^3} tiene un mínimo relativo en x=1. Para ese valor, encontrar los extremos absolutos.
  • Septiembre de 2011:
    Opción A, ej. 1. Hallar el conjunto de puntos en los quela función f(x)=\sqrt{x^2-9x+14} tiene derivada.
  • Junio de 2012:
    Opción A, ej. 3. Dada f(x)=x^3+ax^2+bx +c, hallar a, b y c para que f alcance en x=1 un mínimo relativo y tenga en x=3 un punto de inflexión.
    Opción B, ej. 1. Dada $\displaystyle g(x)=(\ln x)^x$, calcula g'(e).
  • Septiembre de 2012:
    Opción A, ej. 1. Dada la función definida a trozos f(x)=3x+A si x\leq 3 y f(x)=-4+10x-x^2 si x>3, halla los puntos en que la derivada se anula y los extremos absolutos en el intervalo  [4,8].
    Opción B, ej. 2. Calcula la ecuación de la recta normal a la gráfica de f(x)=x^2 \sin x (en un punto dado).
  • Junio de 2013:
    Opción A, ej. 3. Ecuación de la recta tangente en un punto a la gráfica de \displaystyle f(x)=\frac{x^3}{(x-3)^2}.
    Opción B, ej. 1. Extremos absolutos y puntos de inflexión de f(x)=2\cos^2 x en el intervalo [-\pi/2,\pi/2].
  • Septiembre de 2013:
    Opción A, ej. 1. Intervalos de crecimiento y decrecimiento de la función \displaystyle f(x) = \frac{4}{x-4}+\frac{27}{2x+2}.
    Opción B, ej. 3. Ecuación de la recta tangente en un punto a la gráfica de \displaystyle f(x) = \frac{x}{x^2+1}.

Mi conclusión es clara: la mayoría de los ejercicios de cálculo de derivadas que he visto en el cuaderno de mi hija tras dos semanas de derivadas en 1º de Bachillerato son más complicados que los que aparecen en la PAU. Insisto: ya sé que la intención es la mejor, y por supuesto no tengo claro cómo de generalizado está este enfoque, pero todo me hace pensar que no vamos por buen camino. Y, por supuesto, tampoco estoy diciendo que este problema sea específico del bachillerato. En la Universidad, en muchos aspectos, caemos en el mismo tipo de errores.

La derivada en 1º de Bachillerato

Hoy una minientrada, con un anuncio y un comentario para intentar iniciar un debate.

El anuncio es el de la Escuela de Educación Matemática Miguel de Guzmán.  La organizan de forma conjunta la Federación Española de Sociedades de Profesores de Matemáticas y la Real Sociedad Matemática Española. Será en Madrid, del 9 al 11 de julio. La inscripción es gratuita y se cierra el 30 de junio. El objetivo es que sea un punto de encuentro para todos los niveles educativos, y personalmente estaría encantado de que consiguiéramos que asistieran maestros de primaria interesados en las matemáticas.

Y sobre las derivadas, un breve comentario con el ánimo de iniciar un debate: mi hija estudia 1º de Bachillerato, y empezaron el estudio de las derivadas hace dos semanas. Hoy me encuentro en su cuaderno cosas como estas: \displaystyle y = \ln \sqrt {\frac{1+\cos x}{1-\cos x}}   o   y = x^{\ln (x+1)}. Y hasta parece que ha tenido suerte, porque preguntándole a una amiga del otro grupo me dice: «nuestro profesor nos ha avisado de que los ejercicios del libro son demasiado fáciles».

Como siempre que comento un tema así: nada más lejos de mi intención que criticar a los profesores, sé que lo hacen con la mejor intencion, para que «aprendan más». Pero estamos errando el tiro completamente. No sé cómo de generalizado está este enfoque, pero me temo que concuerda bastante con lo que luego vemos en las aulas del primer curso universitario: demasiados alumnos que no entienden absolutamente nada … Como digo, mi idea hoy es sólo tratar de animar el debate. Estoy preparando una entrada hablando del estudio de las derivadas que he visto en un libro para preparar el A-level (la prueba preuniversitaria de Singapur y otros países anglosajones).

Geometría y razonamiento (II)

En los comentarios de la entrada anterior sobre este mismo tema surgió la problemática de demostrar cosas que «son evidentes». Es cierto que demostrar cosas que «se ven» tiene sus peligros, y ya escribí sobre ello en esta entrada sobre el Teorema de Bolzano. Lo que quiero presentar hoy son los dos resultados que más me gustan para intentar combatir este problema. El resultado no es nada evidente, quizá hasta desafía la intuición, pero se puede demostrar con geometría elemental.

El primero es sobre ángulos en la circunferencia. Me voy a permitir presentar el resultado, para los lectores que estén en mi situación de hace un par de años. Es un resultado que tenía completamente olvidado cuando lo redescubrí preparando las matemáticas para maestros, y que creo recordar que sólo lo estudié en el dibujo técnico de un primer curso de ingeniería, donde usamos el libro de Puig-Adam de Geometría Métrica (estoy hablando del curso 83-84,  estoy seguro de que de este tipo de cosas no quedan rastros en las ingenierías, seguramente de forma totalmente justificada). Lo que no sé si es tan explicable es que no volviera a oír hablar de estas cosas a lo largo de una licenciatura en matemáticas.

Los ánguloarco-capazs \angle APB y \angle AQB se llaman ángulos inscritos, y el ángulo \angle ACB es el ángulo central correspondiente. El resultado afirma que todo ángulo inscrito es la mitad del central correspondiente. En particular, por tanto, los ángulos \angle APB y \angle AQB son iguales, e iguales al ángulo \angle AXB si X es cualquier punto del arco de circunferencia de color morado en la figura, que se llama arco capaz del segmento AB. Pues bien, que el ángulo \angle AXB sea el mismo en todo el arco de circunferencia, es un resultado que no es muy intuitivo, en particular cuando el punto X está cerca del punto B. Hay varias demostraciones de este resultado. Esta es la que me parece más sencilla de entender:

Veamos priarco-capaz-caso-1mero el caso en que el segmento PA es un diámetro, como en la figura. En este caso, el resultado de deduce de manera inmediata de la observación de que el triángulo CBP es isósceles.

La segunda parte de la demostración se basa en la observación de que el caso general se puede reducir al primero, considerando el diámetro que pasa por C, tal y como se muestra en la figura. El resto es sólo escribir el argumento, aunque es cierto que si se decide hacerlo la elección del lenguaje más adecuado es importante.

arco-capaz-caso-2

El segundo es sobre secciones de pirámides (y prismas): si consideramos dos pirámides de igual base y altura, como las de la figura, y las cortamos por un plano horizontal, las secciones que se obtienen son iguales.

piramideLa demostración de esto la voy a dejar como «ejercicio para el lector». Me parece una aplicación muy bonita de la semejanza de triángulos, ya que lo que hay que hacer es simplemente demostrar que, en los dos casos:

  1. el triángulo que se obtiene al cortar la pirámide con un plano horizontal es semejante a la base.
  2. la razón de semejanza depende sólo de la altura del plano de corte.

Un último comentario: en especial en este segundo ejemplo, lo que he visto en muchos de mis alumnos es una especie de «reacción complementaria» a la que se produce cuando les demuestras algo «que se ve». Este resultado no es muy intuitivo, y cuando termino la demostración lo que veo en muchas caras es algo así como «vale, las matemáticas dirán lo que quieras, pero yo sigo viendo otra cosa» …

Geometría y razonamiento

Hoy tengo que escribir sobre un fracaso. Una de las asignaturas que imparto en magisterio es Matemáticas II, y está dedicada esencialmente a la Geometría (mas un tema de Estadística y Probabilidad). Como ya he escrito en alguna ocasión (y, por supuesto, no estoy descubriendo nada), un valor esencial de la geometría es que es el marco ideal para iniciarse en el razonamiento lógico. Aunque este aspecto está completamente desaparecido de nuestro currículo, uno de los objetivos importantes en mi planteamiento de la asignatura es intentar solventar ese problema. Como les digo a mis alumnos cuanto protestan porque les pido cosas que no están en los programas, espero que muchos de ellos estén dando clase en el año 2050, y espero que para entonces hayamos conseguido reconducir nuestro currículo de matemáticas básicas.

Pero tampoco este segundo año he quedado mínimamente satisfecho con el resultado. La realidad es que la proporción de alumnos que consiguen completar un argumento, por sencillo que sea, al final del curso, ha sido deprimentemente baja.

Como ya era el segundo año que impartía la asignatura, insistí una y otra vez en que los datos eran los que daba el enunciado y no lo que parecía que ocurría en la figura «a ojo». La corrección del parcial me enfrentó de bruces con la realidad de lo difícil que es cambiar los esquemas mentales de las personas (por cierto, uno de los hechos básicos de la psicología al que me parece que no se presta suficiente atención en la formación del profesorado, y que tenemos que ir descubriendo tropezón a tropezón). Éste era el problema:

congruencia-ex-parcial

Los argumentos que usaron aproximadamente el 90% de los alumnos se sustentaban, de una manera o de otra, en que la figura es simétrica respecto de la recta definida por A y R (por supuesto, sin argumentarlo en absoluto: simplemente, «se ve»). El resultado me pilló completamente de sorpresa. Tenía claro que seguramente para la mitad de los alumnos el problema resultaría demasiado complicado, pero hubo muchos casos de alumnos trabajadores, y que me parecía que estaban siguiendo la asignatura, que cometieron el error ante el que les había tratado de prevenir de forma reiterada. (1)

Por supuesto, tras el parcial no quedó otra que seguir insistiéndoles en los errores cometidos, y en el examen final intenté buscar un ejercicio menos complicado, pero que también requiriera un mínimo nivel de razonamiento. El problema lo encontré en este blog, que me descubrió @DavidBarba2 y que me parece absolutamente recomendable. Es el apartado b) de este problema:

bisectrices-ex-finalUn detalle que me parece importante, y que quiero aclarar, es que para este tipo de preguntas no estoy especialmente interesado en el «rigor formal» o en el uso exhaustivo del lenguaje matemático. Un error que me parece muy frecuente en el inicio del razonamiento es introducir demasiado pronto un exceso de formalismo, que se convierte en una dificultad adicional (como creo que ocurre en las «two column proofs» de la geometría de High School en EEUU).

Un argumento del estilo de:

  • como las rectas r y s son paralelas, los ángulos a y b son suplementarios
  • por tanto, la mitad de a mas la mitad de b suman 90 grados
  • luego el tercer ángulo del triángulo PQZ es recto

me parece perfectamente válido, y así lo traté en la corrección.

Los resultados fueron mejores que en el caso anterior: 50 de los 152 alumnos presentados contestaron la pregunta de forma esencialmente correcta. De todas formas, el resultado sigue sin parecerme satisfactorio dada la (escasa) dificultad de la cuestión. Y, por supuesto, una cantidad aproximadamente igual contestaron algo en la línea de «se ve» que los segmentos PZ y QZ salen perpendiculares, y por tanto el triángulo es rectángulo …

Reconozco que esta entrada ha sido básicamente una catarsis personal. Querría terminar con mis conclusiones básicas. Como siempre que hablo de mis estudiantes de magisterio, debo aclarar que en ellos veo a un estudiante medio de nuestra ESO.

  • casi todos llegan sin distinguir algo que «parece ser cierto» de algo que «podemos comprobar que es cierto». Más aún, una buena parte sigue sin distinguirlo al final de curso.
  • llegan sin la idea de qué significa comprobar (demostrar) una afirmación, y está claro que menos de la mitad lo entienden tras dedicarle horas al tema.
  • más aún: la mayoría llega en el nivel 1 de van Hiele (no distinguen definiciones de propiedades). Se supone que es el nivel de un niño de primer ciclo de primaria. Tras tantos años estancados en ese punto, muchos de ellos no consiguen progresar …

(1) Aclaración: evidentemente, siempre que nos enfrentamos a un problema hay que tener claro de qué herramientas disponemos, y quizá no es del todo evidente en el texto. Los criterios de congruencia de triángulos son uno de los contenidos importantes del curso.

Measurement, de Paul Lockhart

Se trata de un libro realmente excepcional. Ya había mencionado a Paul Lockhart en este blog, en concreto su lamento; en él expone su visión negativa sobre cómo estamos presentando las matemáticas básicas a los chicos. En Measurement Lockhart nos presenta el lado positivo, su visión de cómo se podrían presentar muchos de los conceptos más profundos de la geometría y del análisis. Su propuesta es original y realmente brillante.

No es fácil que un libro de matemáticas sea a la vez interesante para el iniciado y accesible para el profano, pero creo que este libro lo consigue. Desde luego, personalmente he encontrado montones de ideas interesantes, y creo que un lector con formación matemática básica también podría entender la mayoría de los contenidos del libro. Eso sí, Lockhart es honesto desde el principio y abre el libro avisando de que la belleza de las matemáticas requiere esfuerzo y reflexión. Como él dice, la única forma de aprender matemáticas es haciendo matemáticas, y en el texto intercala cuestiones y problemas que deja para el lector (no, no es un libro que incorpore las soluciones de los problemas).

Creo que el secreto del libro es saber elegir el enfoque más accesible para cada idea. La primera parte arranca del problema de medir para presentar muchos de los conceptos más importantes de la geometría clásica. Es difícil elegir un tema: uno de los muchos que me ha gustado es el tratamiento que hace de las cónicas, y quiero mostrar un ejemplo de parte del tratamiento que hace de las elipses.

Hay tres formas de introducir la elipse: (1) una circunferencia deformada; (2) una sección cónica; (3) la definición métrica.

proyeccionQue la (1) y la (2) son equivalentes es sencillo de ver, a condición de presentar la elipse como la sección de un cilindro, en lugar de la tradicional del cono. Puede parecer un detalle sin importancia, pero creo que en estos pequeños detalles está muchas veces la clave del éxito: elegir con cuidado el mejor argumento, y no tener miedo de salirse de los caminos usuales. Si consideramos la curva intersección de un cilindro con un plano, su proyección ortogonal es una circunferencia. La figura muestra cómo en una proyección ortogonal las medidas en la dirección paralela a la recta de intersección de los planos no cambian, pero en la ortogonal sí.

Pero lo mejor viene ahora: también es fácil ver, sin una sola cuenta, que el conjunto de puntos cuya suma de distancias a dos puntos fijos (los focos) es constante, es el mismo objeto geométrico. El resultado es de Dandelin, de 1822. La idea se muestra en la figuelipse-cilindrora. Si colocamos dos esferas (con el mismo radio que el cilindro) y tocando el plano de la elipse, los puntos de tangencia resultan ser los focos.

Para comprobarlo, fijémenos en la distancia entre un punto P de la curva y f1. Las tangentes desde un punto a una esfera forman un cono, y la distancia entre el vértice de ese cono y el punto de tangencia en la esfera es la misma para todas las tangentes. Por tanto, la distancia entre Pf1 es la misma que la distancia entre P  y la circunferencia donde la esfera es tangente al cilindro. Pero esto quiere decir que la suma de las distancias de un punto de la curva a los focos no es más que la distancia entre las dos circunferencias donde las esferas son tangentes al cilindro. Precioso, ¿no?

La primera parte del libro está repleta de contenidos tan interesantes como éste, y por sí misma ya merece la pena, pero es la segunda parte la que me ha resultado más sorprendente, e interesante. A partir del problema del movimiento y de la velocidad, Lockhart introduce el cálculo diferencial, y después el integral. Y lo hace de una forma original y muy bien conseguida. Mi formación en estas áreas fue con el formalismo de Newton, ampliamente mayoritario prácticamente desde los orígenes del tema, y los diferenciales de Leibniz no eran más que un truco para aplicar ciertas reglas mnemotécnicas de forma más sencilla. Lockhart usa los diferenciales de Leibniz a lo largo de todo el tema, y me deja con la duda de si el cálculo diferencial e integral no resulta mucho más fácil de entender de esta forma, al menos para funciones «razonables», que son las que la mayoría de los científicos e ingenieros se van a encontrar en sus disciplinas.

En resumen, un libro absolutamente recomendable.

Las demostraciones

La mayoría de los alumnos que entran en la universidad no saben distinguir cuándo se encuentran ante una demostración, cuándo ante un contraejemplo, cuándo ante la comprobación de un hecho en algún caso particular, y podríamos seguir. La causa es clara: la mayoría no se han tropezado nunca ni siquiera con un esbozo de argumento-demostración. Y la pena es que al no trabajar este tema les estamos privando de una de las competencias más importantes que les podrían aportar las matemáticas: la capacidad de razonar, argumentar, criticar, estudiar si un argumento es completo o no …

No se trata, por supuesto, de insistir en formalizar las ideas de manera prematura, ni obsesionarse con el rigor absoluto. Creo que la clave para poder trabajar este tema cuanto antes es lograr un equilibrio entre los argumentos y los hechos intuitivamente claros. Y, por supuesto, elegir muy bien las demostraciones que se van a trabajar.

¿Cuáles deberían ser las características de una demostración adecuada para primaria/secundaria? Desde mi punto de vista, las siguientes:

  1. que demuestre un hecho que no sea intuitivamente claro; de lo contrario, podemos crear el efecto del que ya hablé en esta entrada, a propósito del Teorema de Bolzano.
  2. que sea enriquecedora, en el sentido de que maneje conceptos que se están estudiando, y que por tanto ayude a entenderlos con mayor profundidad.
  3. que el alumno pueda, al menos, intentar descubrirla por sus propios medios, o con algunas indicaciones.
  4. que deje la puerta abierta a explorar variantes: generalizaciones, casos particulares, …

Por supuesto, hay algunas demostraciones que no cumplen todos estos requisitos, pero cuyo estudio me parece imprescindible, como el hecho de que la suma de los ángulos de un triángulo son 180º. Otras, como la demostración visual de la suma de los primeros n números impares, son totalmente recomendables. Su belleza y sencillez puede ayudar a que alguno de nuestros alumnos descubra el mundo de las matemáticas.  Pero si pensamos en un resultado cuya demostración cumpla los cuatro requisitos mencionados anteriormente, mi favorito ahora mismo es el siguiente:

Si tomamos 3 múltiplos de 4 consecutivos, uno de ellos (y solo uno) es múltiplo de 3.

El resultado se puede introducir ya al final de primaria, cuando se estudia la divisibilidad por primera vez. Aunque sólo sea a través de ejemplos, me parece una buena herramienta para trabajar múltiplos y divisores. Es posible que muchos de los alumnos tengan ya totalmente anestesiada la curiosidad, pero si en alguno de ellos sobrevive algo de interés, creo que propiedades como esta pueden despertar el deseo de aprender más sobre los números.

Además, la demostración es elemental y formativa. Se trata simplemente de darse cuenta de que, a partir del resto de dividir N entre 3, podemos calcular los restos de los siguientes múltiplos, N+4 y N+8. Creo que con alguna ayuda no es imposible que algunos alumnos descubran, o completen, el argumento por sí mismos.

Por último, el 3 y el 4 del enunciado no tienen mucho de especial (si algo, naturalmente). 4 se puede cambiar por 5 o por 7, y el resultado sigue siendo cierto. Por tanto, bien al nivel completamente elemental de estudiar ejemplos, o bien al nivel de determinar cuándo se puede generalizar el argumento-demostración, nos queda abierta la puerta a estudiar para qué parejas de números un resultado análogo sigue siendo cierto.

La formación del profesorado (II)

Para intentar aportar algún dato a la discusión, he tratado de encontrar información sobre la selección del profesorado de primaria en otros países. Antes de continuar, vuelvo a aclarar que me ocupo de la formación matemática, la única de la que me atrevo a opinar.

Como casi siempre que uno se lanza a esto, las referencias apuntan hacia Estados Unidos. Creo que en cuestión de transparencia son de los primeros (bueno, y el inglés también ayuda, claro). Las pruebas de las que se habla en muchos sitios como especialmente bien diseñadas son las del estado de Massachussets (MTEL). No he tenido tiempo de estudiarlas a fondo, pero lo que he visto me ha gustado mucho, porque se centran en evaluar la comprensión de las matemáticas básicas. He puesto un ejemplo de examen en este enlace.

Quizá al verlo alguien crea que me he equivocado, y que corresponde a un examen para un nivel posterior. No, no es así. La información general sobre el sistema MTEL está aquí y en esta otra página las especificaciones de los exámenes para los diferentes tipos de profesorado.

Cuatro enlaces muy interesantes

Mientras encuentro el momento de continuar con las fracciones, quiero compartir algunos enlaces (mi agradecimiento a pepvidal por los dos primeros).

  • Blog de Jaime Martínez Montero sobre algoritmos basados en números (ABN). Aunque mi tesis central es que se deberían hacer menos cuentas, y prestarle más atención a los conceptos, estoy completamente de acuerdo en que los algoritmos deberían cambiar, olvidarse de los algoritmos tradicionales, y seguir las ideas de los algoritmos que se conocen como basados en números.
  • En el colegio Aguamansa (en La Orotava, Tenerife), Antonio Martín lleva años enseñando las matemáticas de primaria dejando a un lado los algoritmos tradicionales. En este canal de youtube se pueden ver ejemplos de lo que son capaces los niños cuando se pone el acento en la comprensión, en lugar de en la repetición.
  • Los estándares de la NCTM (National Council of Teachers of Mathematics) son uno de los documentos de referencia cuando se habla de la enseñanza de las matemáticas en la educación obligatoria. Un organismo análogo, el National Council on Quality in Teaching, elaboró este informe sobre la formación matemática de los profesores de primaria:  No common denominator (este enlace lleva a una versión resumida). Creo que este documento es mucho menos conocido que el anterior, yo lo descubrí esta pasada semana, y me ha parecido del máximo interés. Me ha resultado muy llamativo la gran parte del análisis que creo directamente trasladable al caso español. Quizá esto explique el hecho de que EEUU y España aparecen casi siempre muy próximos en los test internacionales sobre competencia matemática de los estudiantes.

Matemáticas para la docencia

Esto iba a ser la entrada Formación matemática de los futuros maestros (II), pero mientras la pensaba me he dado cuenta de que lo que quería decir aquí se aplica por igual a los futuros profesores de secundaria, de ahí el cambio de nombre.

Cuando se habla de la formación matemática de los futuros docentes, el debate universal gira en torno a si lo más importante son los contenidos, o la formación en metodología/didáctica. En este debate, las ideas que me han parecido más interesantes son las del profesor Hung-Hsi Wu, de la Universidad de Berkeley. Su página web es una excelente fuente de material sobre el tema. En particular,  la presentación The mathematics school teachers should know corresponde a una conferencia que impartió en Lisboa en 2010. El resto de esta entrada la dedicaré a presentar lo que me parecen sus ideas fundamentales. Si el lector prefiere la fuente original, cosa siempre aconsejable, el enlace anterior es mi recomendación.

Según Wu, la formación matemática que reciben los futuros docentes en EEUU es en muchos casos poco adecuada por dos tipos de razones:

  1. los contenidos de los cursos a nivel universitario están demasiado alejados de las matemáticas que tendrán que enseñar. Esta suele ser la situación en el caso de los futuros docentes de enseñanza media.
  2. los contenidos se presentan sin poner atención en algunas de las características fundamentales de las matemáticas: precisión, razonamiento lógico, relación entre áreas y conceptos. Esta suele ser la situación en el caso de los futuros docentes de enseñanza elemental.

Mi impresión es que estos comentarios son casi directamente trasladables a la situación española. Creo que no es casualidad que la situación de los dos países en el informe TEDS-M, del que ya hablé en la entrada anterior sobre este tema, sea similar.

La postura del profesor Wu en el debate contenidos-metodología es clara: los contenidos deben dictar la metodología. No se trata de que la metodología (la didáctica) no sea importánte, pero no tiene sentido trabajar las mejores propuestas metodológicas para presentar, por ejemplo, las fracciones, sin una adecuada comprensión del concepto matemático subyacente. Las fracciones son, de hecho, un ejemplo perfecto del punto central de su argumento. Pensemos por un momento en las alternativas de que dispone un profesor de primaria o secundaria que ha recibido una formación matemática completa, en el sentido «tradicional», para tratar el tema de las fracciones y los números racionales:

  1. una fracción representa una parte de la unidad (trozos de tarta, de pizza, etc).
  2. una fracción es un par ordenado de números enteros (el 2º distinto de cero). Un número racional es un elemento del conjunto cociente obtenido en el conjunto anterior cuando se considera cierta relación de equivalencia.

La opción 1 es la única de la que seguramente dispondrá un profesor de primaria, en tanto que la 2 puede ser parte del conocimiento de un profesor de secundaria que ha cursado estudios de matemáticas. Pero es evidente que la opción 2 no es una alternativa para tratar las fracciones en ningún momento de la enseñanza media. La opción 1 puede ser una alternativa para la primera introducción a las fracciones en primara, pero en cierto momento, que personalmente situaría al final de la primaria o en todo caso al principio de la secundaria, se necesita precisar el concepto de fracción. En particular, para darle un mejor sentido a la aritmética de fracciones.

¿Cuál es entonces la alternativa de Wu para la presentación de las fracciones? Bueno, será el tema de mi próxima entrada, esta ya es demasiado larga. Termino esta entrada diciendo que este tipo de preguntas son centrales en la preparación de los futuros profesores. En EEUU se suele hablar de Mathematical Knoweledge for Teaching, para referirse a este tipo de contenidos, y desde mi punto de vista es el encuentro natural de las visiones desde los contenidos y la didáctica, más tradicionales en nuestro país. Y es el punto de encuentro necesario para lograr una formación más completa de los futuros docentes.