Las calculadoras “modernas”

El otro día me llegó (vía @tocamates) un tuit de @JosePolLezcano que enlazaba una calculadora que imita la aritmética del lápiz y papel: y (un ejemplo, en la imagen). Además de suma, resta, multiplicación y división, tiene también el algoritmo de la raíz cuadrada, y la factorización (con la rayita y todo).

calculadora-Alicia

No me pude resistir al impulso de contestar que no me parecía buena idea, y a continuación tuvimos un breve e interesante debate, que concluyó con mi compromiso de escribir una entrada sobre el tema. Aquí está.

Se trata de reflexionar sobre el tipo de calculadora; sobre el tema de los algoritmos tradicionales de la aritmética ya he escrito, por ejemplo aquí. Supongamos por tanto que hemos decidido que el alumno debe aprender a hacer divisiones como la del ejemplo (o un poco mas cortas, este detalle no me parece relevante para esta discusión). Desde mi punto de vista, la pregunta clave es: ¿ayuda una calculadora como esta en el aprendizaje (es decir, en la mecanización) del algoritmo? Me parece que no: desde luego, lo más cómodo para el alumno, y para el profesor, es una calculadora que diga que donde puse un 7 debería haber un 8, pero no me parece que eso aporte nada al aprendizaje (ni siquiera al de la rutina). Puestos a corregir la división con ayuda de una calculadora (lo que no me parece mala idea), creo que sería mucho más adecuado aprovechar esta situación para mostrar al alumno que lo que está haciendo en el primer paso es dividir 869 entre 325, que el cociente es 2 y el resto 219. La inmensa mayoría de los alumnos no son conscientes de esto, ¡nadie se lo dice!

Por supuesto que la calculadora “moderna” es más cómoda, pero debería estar claro que lo más cómodo no siempre es lo más formativo …

Anuncios

¿Andando o en autobús?

Parece que la comparación entre ir andando como equivalente al cálculo mental e ir en coche o autobús como equivalente al uso de la calculadora está haciendo fortuna en las últimas semanas.

Primero fue esta carta al director de El País de  Ricardo Moreno Castillo (el autor de “Panfleto antipedagógico”):

La utilidad de las calculadoras es indudable, como lo es la de los coches, pero no se ha de olvidar que así como el caminar sigue siendo un saludable ejercicio, también lo sigue siendo el cálculo mental. A mi juicio, las calculadoras no deben de ser usadas antes de los 14 años.

Hace unos días, un tuit de @notemates

Operar sin calculadora para ejercitar la mente es como ir al cole sin bus, andando para hacer ejercicio.

Las analogías suelen tener su peligro, pero creo que esta no es del todo mala. Sin embargo, si queremos que nos sirva para progresar en el debate creo que hace falta algo más de informacion.

Imaginemos que nos encontramos con una pareja de amigos debatiendo cómo ira su hijo al cole durante el curso próximo: “yo creo que es mejor que vaya en autobús”, dice él. “Pues yo creo que es mejor que vaya andando”, responde ella. Falta algo, ¿verdad? Si no conocemos la edad del niño y, sobre todo, a qué distancia está el colegio, es difícil hacerse una idea del sentido de la conversación.

Pues creo que lo mismo pasa con el debate sobre el cálculo mental y las calculadoras. Si la cuenta que hay que hacer es 12+9, que es el equivalente a que el colegio esté a dos manzanas en un barrio bien urbanizado, está claro que la cuenta se debería hacer de cabeza, sin mayor esfuerzo. Por el contrario, si el colegio estuviera a 10 km, que yo lo consideraría equivalente a tener que calcular 39876 \times 829, supongo que todos asumimos que el niño usará, en ambos casos, una tecnología propia del siglo XXI.

En resumen: creo que si queremos progresar en el debate no queda mas remedio que concretar qué nos parece adecuado para ser abordado con técnicas de cálculo mental/natural, qué cálculos creemos destinados a la calculadora, y si quedan cálculos en algún terreno intermedio.

La raíz cuadrada

La verdad es que hasta hace un par de años había dado por hecho que el algoritmo tradicional para el cálculo de la raíz cuadrada había desaparecido de nuestras aulas. Supongo que la razón era sencillamente que mis hijas “se libraron” de él. Quizá en algún momento comentaron algo en clase, pero nunca las vi calculando en casa, ni lo prepararon para un examen.

Estos últimos años aprovecho cualquier ocasión para hablar con profesores, y he descubierto con algo de sorpresa que la situación puede ser algo diferente. Como siempre, por supuesto, no existen datos sobre lo que se está haciendo en las aulas, y los currículos no concretan lo suficiente. En la figura se puede ver lo que dicen sobre el tema tanto el currículo de la LOE como el nuevo de la LOMCE. ¿Forma parte del currículo el algoritmo tradicional para el cálculo de la raíz cuadrada? Bueno, creo que es tan defendible una cosa como la contraria …

raiz-cuadrada-curriculo

La “opinión de los libros de texto” (mayoritarios) no es difícil de adivinar, dada su inclinación al “cuanto mas mejor”. En la figura se pueden ver dos ejemplos, los dos de ediciones recientes. Mi premio especial va para el ejemplo de la derecha, desde luego, no solo por el tamaño del número (118527) sino, sobre todo, por terminar con el resto (191), y dejarlo ahí, como si interpretar el resto de una raíz cuadrada fuera algo sencillo, o remotamente similar al resto de la división …

raiz-cuadrada-textos

Algunos países ya han eliminado el algoritmo de la división con divisores de dos o mas cifras, y seguro que muchos otros muchos se lo están pensando. Mientras, nosotros seguimos atascados en temas que han superado hace tiempo en otros lugares. No he encontrado referencia a este tema en ningún currículo/texto de otros países, y si no me diera mucha vergüenza emular al gran Donald Knuth casi me atrevería a ofrecer 10 € a cualquier lector que encontrara un ejemplo de este algoritmo fuera de nuestro país. Me parece un ejemplo perfecto de ese problema de educación viejuna del que se empieza a escribir con cierta regularidad en otros foros.

Una nota aclaratoria que ya me he acostumbrado a hacer siempre que hablo sobre estos temas es que por supuesto que los alumnos deben aprender a estimar raíces cuadradas, y a encontarlas si el tamaño del número es el adecuado. Creo que hacer esto con métodos de cálculo mental – cálculo natural enseña mucho mas sobre qué significa la raíz cuadrada que reproducir la receta del algoritmo tradicional.

Y una nota final: en algún debate algún profesor me ha dicho que “trabajar el algoritmo no hace daño”. Bueno, puede que no; pero me parece discutible argumentar (con toda la razón) que no hay tiempo suficiente para tratar de forma adecuada los temas del currículo, y a la vez invertir parte de ese tiempo en el algoritmo de la raíz cuadrada. Además, puede ser cierto que a algunos niños les “gusta calcular” (yo nunca tuve ningún problema con ello, hice bastantes raíces cuadradas, y no tengo mal recuerdo de ello) pero hay otros alumnos a los que se les atraviesa el cálculo, por razones variadas, y que crecen con la sensación de que no valen para las matemáticas (o de que las matemáticas son un rollo inútil).

Un examen de 4º de ESO

Antes de enseñar el examen en cuestión, unas notas aclaratorias:

Esta entrada no es, en absoluto, un “desahogo de un padre enfadado”. Mi hija ya pasó los cursos mas difíciles, y trabaja razonablemente. Además, claro, tiene en casa ayuda cuando la necesita. De manera que su único problema es que tiene un poco mas difícil – que no imposible – llegar al sobresaliente, que es su objetivo.

Tampoco se trata de lanzarse al deporte de “criticar al profesor”. No conozco personalmente a su profesora, pero estoy convencido de que me encontaría con un perfil similar al que ya he comentado en alguna ocasión: una persona trabajadora, y convencida de que hace lo que puede, dada la formación que tienen sus alumnos, los requerimientos del programa, etc. Algún comentario me ha llegado en la dirección de que pone muchas cosas en el examen para que todo el mundo pueda hacer algo … El problema de fondo aquí, claro, es el aislamiento en que vive una buena parte del profesorado. Y en este punto me parece que las responsabilidades están bastante repartidas: la administración no cuida la formación continua lo que debería, es verdad, pero en estos tiempos cualquier interesado tiene a su alcance experiencias, materiales y puntos de vista distintos: no necesariamente mejores, pero adecuados para promover la reflexión.

Por último, es evidente que se trata solo de “evidencia anecdótica”. No tengo ni idea de lo extendido que está este enfoque en nuestras aulas. El problema es que ¡nadie lo sabe! Estoy intentando arrancar un estudio (anónimo, y con selección aleatoria de aulas) pero de momento sin éxito. No me he dado por vencido …

Para terminar, un dato relevante es, claro, el tiempo dedicado al examen: 1 h 20 minutos. Supongo que un día venceré la pereza y lo haré completo; de momento la opinión que tengo es solo “de primera vista”. Y prefiero reservarla, por ahora, para escuchar antes las vuestras.

ex-ESO-4

Técnicas versus conceptos

La conferencia de clausura de la jornada sobre innovación que mencioné en la entrada anterior fue impartida por Michèle Artigue. No la conocía (soy un recién llegado al campo de la educación matemática) pero se trata sin duda de una primera figura a nivel internacional. Recientemente ha recibido nada menos que el premio Felix Klein en el año 2013 y la medalla Luis Santaló en el año 2014, dos de las distinciones mas importantes en el área.

La primera parte de su conferencia la dedicó a presentar unos materiales sobre los que estaban trabajando. Me parecieron interesantes. La idea era modelar con Geogebra problemas de persecución. Ahora no encuentro una referencia, pero cuando la consiga volveré a hablar sobre este tema.

Después su conferencia se deslizó hacia aspectos mas abstractos de la didáctica. Antes de seguir, una aclaración preventiva: no pretendo cuestionar el interés de esta didáctica mas abstracta. Lo único que digo es que demasiadas veces peca de excesivamente académica, y alejada de la realidad de las aulas y que, por tanto, puede no resultar del todo accesible e interesante para el profesor de a pie. Este problema no es, desde luego, exclusivo de la didáctica. De hecho, creo que los matemáticos caemos en este error con bastante frecuencia. Para dar un ejemplo en el que he caído personalmente, empeñarse en hablar de epsilones y deltas – o del Teorema de Bolzano – a futuros ingenieros. Y también ocurre en otras áreas alejadas de las matemáticas. La mas prominente me parece el bombardeo de análisis sintáctico y morfológico en los estudios de Lengua de nuestra secundaria.

Total: que en esos aspectos abstractos de la didáctica me perdí completamente, y estuve distraído unos minutos hasta que escuché una expresión ya oída, la teoría antropológica de lo didáctico. Ya me había topado con la etiqueta en alguno texto, sin llegar a entender casi nada, así que intenté concentrarme de nuevo en la conferencia, para ver si conseguía sacar alguna idea en claro. Nuevo fracaso: la jerga me resulta incomprensible. Si algún lector sabe algo del tema, y puede expicar en qué consiste en lenguaje accesible a profanos, le estaré sinceramente agradecido.

De manera que nuevos minutos de distracción, hasta que escuché una frase, pronunciada con total convicción. que captó de nuevo mi atención. Creo que, textualmente (habla un castellano bastante correcto), Artigue dijo: “Pensar que, gracias a las TIC, podemos prescindir de las técnicas y centrarnos en el estudio de los conceptos es un profundo error”. Es una frase que suscribo completamente, pero se trata solo de la entrada al problema, claro. Es una pena que no hubiera tiempo para profundizar en el tema (era ya el final de la conferencia, no hubo turno de preguntas, y la reunión terminaba justo entonces) porque me parece una de las grandes cuestiones de la educación matemática en nuestros días.

Desde mi punto de vista, la clave es que existe una fuerte relación entre algunas técnicas y los conceptos. Dicho de otra forma: para comprender de forma adecuada ciertos conceptos es importante adquirir cierta soltura técnica. Ahora bien, creo que es crucial entrar en el detalle. Por poner un ejemplo sencillo: estoy de acuerdo en que hacer divisiones es importante para comprender los problemas de reparto y, en general, para adquirir sentido numérico. Ahora bien, si el valor fundamental del cálculo de divisiones es éste, es muy posible que tengamos que revisar cómo hacer las divisiones, y qué divisiones hacer. Por una razón muy sencilla: el algoritmo tradicional de la división se diseñó con un objetivo muy distinto, que no es otro que poder hacer divisiones exactas con enteros grandes. Si este objetivo ha quedado obsoleto (personalmente, creo que sí), es muy posible que el algoritmo tradicional haya quedado también obsoleto. Revisar los currículos con esta idea en la cabeza puede ser una tarea apasionante. Si hubiera que hacer un concurso sobre el algoritmo mas caduco, por superfluo a la hora de ayudar a la comprensión conceptual, mi voto creo que sería para la Regla de Ruffini. ¿Y el suyo?

 

La derivada en 1º de Bachillerato (II)

Parece que está claro que el tema de cómo tratar la derivada en 1º de Bachillerato genera cierto debate. Me parece muy bien, siempre ha sido uno de los objetivos de este blog. Sigue en la lista una entrada sobre cómo se trata la introducción de la derivada en otros lugares, pero antes de eso me ha parecido conveniente aclarar los datos sobre uno de los argumentos más repetidos (no sólo en los comentarios, también siempre que hablo del tema con amigos profes). Se oye con bastante insistencia eso de que las derivadas se complican enseguida porque “es lo que les van a pedir en selectividad”. Como digo, es una tarea que tenía pendiente, y este debate me ha decidido a vencer la pereza y lanzarme a ello. Estos son los ejercicios que involucran una derivada en las PAU de Madrid en los últimos cuatro años, aquellos a los que tengo fácil acceso en mi universidad.

  • Junio de 2010:
    Opción A, ej. 4. Preguntan los intervalos de crecimiento y decrecimiento de la función f(x) = \ln(x^2+4x-5).
  • Septiembre de 2010:
    Opción B, ej. 2. Preguntan representación e intervalos de concavidad de la función  f(x) = \displaystyle \frac{3x^2+5x-20}{x+5}.
  • Junio  de 2011:
    Opción A, ej. 3. Extremos absolutos de la función f(x)=\sqrt{12-3x^2}.
    Opción B, ej. 1. Para qué valor de a la función \displaystyle f(x)=\frac{ax^4+1}{x^3} tiene un mínimo relativo en x=1. Para ese valor, encontrar los extremos absolutos.
  • Septiembre de 2011:
    Opción A, ej. 1. Hallar el conjunto de puntos en los quela función f(x)=\sqrt{x^2-9x+14} tiene derivada.
  • Junio de 2012:
    Opción A, ej. 3. Dada f(x)=x^3+ax^2+bx +c, hallar a, b y c para que f alcance en x=1 un mínimo relativo y tenga en x=3 un punto de inflexión.
    Opción B, ej. 1. Dada $\displaystyle g(x)=(\ln x)^x$, calcula g'(e).
  • Septiembre de 2012:
    Opción A, ej. 1. Dada la función definida a trozos f(x)=3x+A si x\leq 3 y f(x)=-4+10x-x^2 si x>3, halla los puntos en que la derivada se anula y los extremos absolutos en el intervalo  [4,8].
    Opción B, ej. 2. Calcula la ecuación de la recta normal a la gráfica de f(x)=x^2 \sin x (en un punto dado).
  • Junio de 2013:
    Opción A, ej. 3. Ecuación de la recta tangente en un punto a la gráfica de \displaystyle f(x)=\frac{x^3}{(x-3)^2}.
    Opción B, ej. 1. Extremos absolutos y puntos de inflexión de f(x)=2\cos^2 x en el intervalo [-\pi/2,\pi/2].
  • Septiembre de 2013:
    Opción A, ej. 1. Intervalos de crecimiento y decrecimiento de la función \displaystyle f(x) = \frac{4}{x-4}+\frac{27}{2x+2}.
    Opción B, ej. 3. Ecuación de la recta tangente en un punto a la gráfica de \displaystyle f(x) = \frac{x}{x^2+1}.

Mi conclusión es clara: la mayoría de los ejercicios de cálculo de derivadas que he visto en el cuaderno de mi hija tras dos semanas de derivadas en 1º de Bachillerato son más complicados que los que aparecen en la PAU. Insisto: ya sé que la intención es la mejor, y por supuesto no tengo claro cómo de generalizado está este enfoque, pero todo me hace pensar que no vamos por buen camino. Y, por supuesto, tampoco estoy diciendo que este problema sea específico del bachillerato. En la Universidad, en muchos aspectos, caemos en el mismo tipo de errores.

La derivada en 1º de Bachillerato

Hoy una minientrada, con un anuncio y un comentario para intentar iniciar un debate.

El anuncio es el de la Escuela de Educación Matemática Miguel de Guzmán.  La organizan de forma conjunta la Federación Española de Sociedades de Profesores de Matemáticas y la Real Sociedad Matemática Española. Será en Madrid, del 9 al 11 de julio. La inscripción es gratuita y se cierra el 30 de junio. El objetivo es que sea un punto de encuentro para todos los niveles educativos, y personalmente estaría encantado de que consiguiéramos que asistieran maestros de primaria interesados en las matemáticas.

Y sobre las derivadas, un breve comentario con el ánimo de iniciar un debate: mi hija estudia 1º de Bachillerato, y empezaron el estudio de las derivadas hace dos semanas. Hoy me encuentro en su cuaderno cosas como estas: \displaystyle y = \ln \sqrt {\frac{1+\cos x}{1-\cos x}}   o   y = x^{\ln (x+1)}. Y hasta parece que ha tenido suerte, porque preguntándole a una amiga del otro grupo me dice: “nuestro profesor nos ha avisado de que los ejercicios del libro son demasiado fáciles”.

Como siempre que comento un tema así: nada más lejos de mi intención que criticar a los profesores, sé que lo hacen con la mejor intencion, para que “aprendan más”. Pero estamos errando el tiro completamente. No sé cómo de generalizado está este enfoque, pero me temo que concuerda bastante con lo que luego vemos en las aulas del primer curso universitario: demasiados alumnos que no entienden absolutamente nada … Como digo, mi idea hoy es sólo tratar de animar el debate. Estoy preparando una entrada hablando del estudio de las derivadas que he visto en un libro para preparar el A-level (la prueba preuniversitaria de Singapur y otros países anglosajones).