Este curso he repensado bastante la asignatura de Aritmética (para maestros) y he dedicado cierto tiempo a pensar sobre los algoritmos básicos de la aritmética. Además, algunos debates como el que originó este tuit
sobre determinantes, me han convencido de que quizá sea hora de hacer un repaso al tema. Esta entrada es el comienzo de una serie sobre los algoritmos de las matemáticas básicas (entendidas como las matemáticas previas a la universidad). El ritmo será el que se pueda, y durará lo que me dure la cuerda, y/o el interés de los lectores.
Mi intención es seguir el orden en que van apareciendo en el currículo, pero antes de empezar a hablar de sumas y restas creo que merece la pena hacer algunas consideraciones generales.
Me parece que sigue sin estar nada claro cuál es el papel de los algoritmos en estos tiempos, cuando estamos rodeados de dispositivos que hacen todo tipo de cálculos, de forma más rápida y más fiable de lo que lo podrá hacer ningún ser humano. Creo que debería ser uno de los temas centrales de debate en didáctica de las matemáticas, y me parece que no lo está siendo. Por supuesto, lo que voy a exponer aquí son solo mis opiniones, ya me gustaría tener datos. Además, estas opiniones van evolucionando con el tiempo.
Voy a tratar de resumir en un párrafo mis reflexiones sobre el tema, que se pueden ver en versión ampliada en esta presentación, donde recojo mi intervención en la mesa redonda que la IX Escuela Miguel de Guzmán dedicó al tema.
Me parece evidente que el estudio de los algoritmos no puede ser ya un fin en sí mismo, como lo era, de forma justificada, hasta hace unos cuantos años. Mi tesis de inicio es que un algoritmo merecerá ser estudiado si, no solo se entiende, sino que ayuda a comprender ideas y conceptos que sean relevantes. Algunas veces se oye que a algunos alumnos les gusta calcular, por el puro gusto de calcular. Bien, no tengo problema en aceptar eso. Pero todos tenemos nuestros gustos y aficiones, y que haya un colectivo al que le resulte atractiva la actividad X no es razón para imponer esa actividad a toda la población. Sobre todo, si resulta que hay otros alumnos a los que esa imposición/requerimiento les aleja de la disciplina completa, o les impone una dificultad adicional, muchas veces decisiva, en el aprendizaje de las matemáticas.
Un último comentario previo: un mismo algoritmo se puede presentar de muchas formas. En particular, en la figura se muestran dos ejemplos que corresponden al algoritmo tradicional de la suma, y que probablemente corresponden a tratamientos bastante distintos del mismo. Cuando hablemos de un algoritmo, habrá que asumir que se trata de forma adecuada o, en todo caso, discutir en qué consistiría esa presentación adecuada.

Si queremos hablar de algoritmos para sumar y restar en los primeros cursos de primaria, deberíamos tener claro antes cuáles son los conceptos fundamentales de esa etapa, y que deberían ser desarrollados en paralelo con los algoritmos. Este caso me parece claro: la notación posicional y, más en general, el sentido numérico.
Empezando por la suma, voy a considerar tres algoritmos distintos. Primero, una presentación rápida, y después hablaré de las ventajas e inconvenientes que les veo.
- El tradicional, mostrado en la figura anterior, y que no necesita presentación.
- Explorando sobre el tema me encontré con un vídeo de un alumno que sumaba como se muestra en la figura.
Me parece una propuesta muy interesante, y que también puede verse como otra forma de escribir la suma en fila

Me parece evidente que escribir la suma como en la figura facilita los cálculos al alumno.
- Los algoritmos ABN. Creo que ya son bastante conocidos, pero aquí va una presentación en dos líneas «en aras de la completitud». El acrónimo proviene de algoritmos Abiertos Basados en Números. En la tabla de la derecha se muestra un ejemplo. Si queremos sumar los números 36 y 43, lo que se hace es disponer lainformación en una tabla, e ir pasando cantidades del número menor al mayor. Evidentemente, cuando hemos pasado el número completo, en la casilla correspondiente aparece la suma final. La forma de pasar es flexible, y alumnos con diferentes habilidades de cálculo
encontrarán caminos distintos (de ahí el adjetivo de abiertos). Creo que la escritura no está del todo estandarizada (se puede argumentar que no hace falta, por supuesto) y si se buscan ejemplos es posible que no aparezca la columna de la izquierda del ejemplo, las cantidades que se van pasando. En este blog se puede encontrar más información.
Voy a atreverme a aventurar unas pocas reflexiones sobre comparación de estos algoritmos, dejando claro que son reflexiones personales, que han cambiado en estos últimos años, que pueden cambiar en el futuro próximo, y que tengo más preguntas que respuestas.
En primer lugar, decir que el algoritmo tradicional me parece una buena opción. Eso sí, por supuesto, trabajando con números del tamaño adecuado al desarrollo del alumno, y no «llevándome 1», sino reagrupando las 12 unidades en una decena y dos unidades, con el apoyo gráfico/manipulativo necesario.
El algoritmo 2 me gusta mucho. Creo que usa de forma muy natural la notación posicional, y que cuando se calculan sumas de esta forma se está haciendo un uso intenso de las descomposiciones numéricas. Su gran ventaja, me parece, es que se adapta muy bien a las técnicas de cálculo mental y cálculo aproximado. Si queremos hacernos a la idea del orden de magnitud de una suma, es evidente que debemos a sumar desde la izquierda. Solo le veo un inconveniente, y es que no veo cómo trasladarlo al caso de la resta, como veremos más abajo. Y creo que este es un inconveniente muy serio. La pregunta surge sola: ¿sería adecuado trabajar los algoritmos 1 y 2, en paralelo o de forma secuencial? Creo que solo una posible experiencia de aula nos podría iluminar en este punto.
Sobre el ABN, entiendo el éxito relativo que están teniendo en las aulas. Lo que me parece que ocurre en muchos casos es que sustituyen a un tratamiento puramente mecánico del algoritmo tradicional. Y claro, tras años de ver que tus alumnos no entienden nada, hacer por fin algo que se entiende tiene un atractivo evidente. Sobre el algoritmo en sí mismo, es desde luego un buen ejercicio de cálculo mental. Pero si se piensa (como es mi caso) que una de las razones fundamentales de trabajar un algoritmo de la suma es trabajar la comprensión de la notación posicional, entonces creo que surgen muchas dudas. Por los ejemplos que se ven en la red, y por lo que he visto hacer a mis alumnos al tratarlos en la asignatura de aritmética, no me parece que profundizar en la comprensión de la notación posicional sea su fuerte. Pero esta cuestión está abierta, desde luego.
Para terminar con la suma, por supuesto que otra alternativa sería olvidarse de algoritmos, trabajar el cálculo mental (pensado), desarrollando las estrategias adecuadas, de forma realmente flexible, y pasar a la calculadora cuando el tamaño de los números lo requiera.
La resta.
Restar es intrínsecamente más difícil que sumar. Y esto se evidencia tanto en la comprensión del concepto como en los algoritmos. Empezando por los algoritmos tradicionales, hay dos formas de arreglar el problema que surge cuando la cifra del minuendo es menor que la correspondiente del sustraendo.

En el recuadro rojo de la figura (la resta de la izquierda) se muestra el algoritmo tradicional en España (y en otros países europeos). Aquí el problema de cómo se presenta en las aulas es claro. Decir «me llevo una» en el caso de la suma puede ser poco adecuado, pero en el caso de la resta es simplemente disparatado. No hay una, ni me la llevo a ningún sitio. Estamos simplemente trasladando la cantilena de la suma a una situación completamente distinta. Desde luego, con ese lenguaje es imposible que los alumnos entiendan nada, y mi impresión es que muchos niños empiezan a naufragar con la introducción del algoritmo de la resta. La idea para justificar el algoritmo es sencilla, otra cosa es que sea natural, o fácil de captar por el alumno de 1º-2º de primaria. Lo que hace el algoritmo es usar la propiedad de compensación: sumamos 10 unidades al minuendo y 1 decena al sustraendo. La diferencia se mantiene, y ya podemos hacer la cuenta. El lenguaje que se ha usado en España para presentar este algoritmo deja bien claro que la comprensión nunca ha estado entre nuestras preocupaciones a la hora de enseñar matemáticas.
La alternativa de la derecha, usada en el mundo anglosajón y en Asia (y llegando a nuestras aulas) consiste en desagrupar una decena, expresándola como 10 unidades. En el ejemplo, en lugar de 4 decenas y 2 unidades, tenemos 3 decenas y 12 unidades, y ya podemos seguir con el cálculo. Lo que he visto en las aulas es que se usa el término «prestar» y tampoco me parece adecuado, porque creo que deberíamos enseñar a nuestros alumnos que lo que te prestan tienes que devolverlo, y aquí no hay devolución posible. Creo que la verbalización del procedimiento debe estar adaptada al vocabulario de los niños, por supuesto, pero también debe reflejar el proceso de manera correcta. ¿Tomamos una decena, y la expresamos como 10 unidades? Quizá haya mejores alternativas. De nuevo, la experiencia de aula es imprescindible.
La mayor dificultad de la resta queda en evidencia al tratar de buscar un análogo del segundo algoritmo para la suma. No veo alternativa mejor que la que muestra la figura, basada en una idea que circuló por twitter hace unos días.
Seguramente sea un ejercicio interesante, para 1º de la ESO, para trabajar la aritmética de los enteros, y hacer eso tan importante, y que tan pocas veces hacemos, que es reflexionar sobre las conexiones entre diferentes temas. Pero si hablamos de algoritmo para la resta en 2º-3º de primaria, no me parece una alternativa.
En cuanto a los algoritmos ABN, en la figura se muestra un ejemplo. Me parece que la tabla es suficientemente explícita: voy quitando del número mayor, y cuando lo he quitado todo me encuentro
con la diferencia.
Para terminar, una breve comparación. Sobre los ABN, los comentarios son los mismos que para la suma. Y no es casualidad, porque las ideas subyacentes son exactamente las mismas, claro.
De nuevo aquí se puede aplicar el comentario final sobre la suma: una opción podría ser prescindir de los algoritmos en columna (y de las tablas de los ABN), trabajar (con números del tamaño adecuado al desarrollo de los alumnos) técnicas de cálculo pensado, y recurrir a la calculadora cuando los números sean más grandes.
Finalmente, mi opinión sobre las dos alternativas para gestionar «las llevadas»: no conozco ningún resultado basado en trabajo de aula, pero estoy convencido de que hacer reagrupamientos en el minuendo es más natural que usar la compensación aumentando el sustraendo. Y creo que hay cierto consenso en el tema, a juzgar por cómo la primera de las alternativas va ganando terreno en las aulas y en los libros de texto. Otra cosa son los problemas que la transición está causando, con libros que empiezan con una alternativa para luego usar otra más adelante, o colegios donde se hace algo parecido, o el desconcierto de algunas familias cuando se encuentran con que no saben cómo resta su hijo. Este es otro tema, que quizá merezca tratarse en otra entrada, esta ya es demasiado larga.